Yearly Archives: 2014

On declaring variables

Go has several ways to declare a variable. Possibly there are more ways than are strictly required but with the Go 1 contract in effect it’s not going to change.

This short post gives examples of how I decide which variable declaration syntax to use. These are just suggestions, they make sense to me, but I’m sure others have equally strong justifications for alternative arrangements.

When declaring (but not initialising) a variable consider using this syntax

var num int

As Go does not permit uninitialised variables, num will be initialised to the zero value.

Some other examples of this form might be

var things []Thing // an empty slice of Things
for t := range ThingCreator() {
        things = append(things, t)
}

var thing Thing // empty Thing struct 
json.Unmarshall(reader, &thing)

The key is that var acts as a clue that the variable has been deliberately declared as the zero value of the indicated type.

When declaring and initialising, consider using the short declaration syntax. For example

num := rand.Int()

The lack of var is a signal that this variable has been initialised. I also find that by avoiding declaring the type of the variable and infering it from the right hand side of the assignment makes re-factoring easier in the future.

Of course, with any rule of thumb, there are exceptions.

min, max := 0, 1000

But maybe in this case min and max are really constants.

var length uint32 = 0x80

Here length may be being used with a library which requires a specific numeric type and this is probably more readable than

length := uint32(0x80)

Go 1.3 linker improvements

Go obtains much of its compilation speed from the Plan 9 compiler, of which it is a direct descendant. The Plan 9 toolchain deferred much of the work traditionally performed by a compiler to the linking stage and its performance was summarised in section 8 of this paper

The new compilers compile quickly, load slowly, and produce medium quality object code.

Because of the similar division of labour between Go’s compiler and linker, linking is commonly more expensive that compilation. This leads to several problems

  • Linking cannot benefit from incremental compilation, each link pass starts afresh even if only a tiny part of program has changed.
  • Linking speed is at least linear (often worse) with the number of packages being linked into the final executable – larger programs link slower.
  • While multiple commands may be linked in parallel, each individual link is single threaded – as CPU speeds stall, or go backwards, favouring additional cores, linking gets slower in real terms.

It should be noted that while linking is considered slow in terms of the other parts of the Go toolchain, it remains much faster than linking a traditional C or C++ application.

Linking speed has long been recognised as an issue by the Go developers and during the 1.3 development cycle the linker underwent major changes to improve its performance.

What does the Go linker do ?

To understand the change, Russ Cox wrote in his proposal at the beginning of the cycle

The current linker performs two separable tasks.

First, it translates an input stream of pseudo-instructions into executable code and data blocks, along with a list of relocations.

Second, it deletes dead code, merges what’s left into a single image, resolves relocations, and generates a few whole-program data structures such as the runtime symbol table.

In a nutshell, the change has moved the first task of the linker, the pseudo instruction translation, from the linker into the compiler.

What are pseudo instructions ?

Prior to Go 1.3, the output of the compiler, the .a files in your $GOPATH/pkg directory was not directly executable machine code. It was, as Russ describes, a stream of pseudo instructions, which, while not machine independent, it was also not directly executable.

During the linking phase, the linker itself was responsible for turning this pseudo instruction stream into real machine code. Dealing with pseudo instructions during the compilation phase makes the compiler simpler to write.

An example of a pseudo instructions are the unified MOV instruction available to the compiler and assembler

MOV R0, R1          // move the contents of R0 into R1
MOV $80000001, R0   // move the the constant 80000001  into R0
MOV R0, 0           // move the value into R0 into address 0

On a processor like ARM, when translated to machine code, this becomes three separate operations. The first MOV R0, R1 is a simple move from one register to another and the final opcode is MOV.

The second form stores the large constant, 80000001 into R0. ARM processors cannot encode such a large constant directly into the instruction so the linker would store the constant at the end of the function and replace the MOV with a load from an address relative to the program counter into a scratch register (R11 is reserved for the linker) then move the value from R11 to R0.

The final form also needs help from the linker as ARM processors cannot use a constant as an address to store a value. The linker will arrange to load 0 into R11 then store the contents with an instruction like MOV R0, (R11)

The work required for X86 is similar, although the specific restrictions differ.

The results

To evaluate the performance improvements of the change to the linker I’m going to compare building and linking two programs, the venerable godoc and the jujud server binary which depends on almost every line of code in the Juju repo.

In preparation I checked out copies of Go 1.2.1 and Go 1.3beta1 (this data was collected some time ago, but the changes in 1.3beta2 are unrelated to the linker).

godoc

% rm -rf ~/pkg
% time /tmp/go1.2.1/bin/go install code.google.com/p/go.tools/cmd/godoc
real    0m3.239s
user    0m3.307s
sys     0m0.595s

The time to compile and link godoc from scratch on this machine with Go 1.2.1 was 3.2 seconds. Let’s look at the time just to recompile the main package and link godoc

% touch ~/src/code.google.com/p/go.tools/cmd/godoc/play.go
% time /tmp/go1.2.1/bin/go install code.google.com/p/go.tools/cmd/godoc
real    0m1.578s
user    0m1.434s
sys     0m0.146s

With most of the compilation avoided, the total time drops to 1.5 seconds. Let’s look at how the linker change in Go 1.3 affects the results.

% rm -rf ~/pkg
% time /tmp/go1.3beta1/bin/go install code.google.com/p/go.tools/cmd/godoc
real    0m3.193s
user    0m3.441s
sys     0m0.530s

Under Go 1.3beta1 the time to compile and link from scratch is roughly the same as Go 1.2.1. There is perhaps a hint that more work is being done in parallel. Let’s compare the results from an incremental compilation.

% touch ~/src/code.google.com/p/go.tools/cmd/godoc/play.go
% time /tmp/go1.3beta1/bin/go install code.google.com/p/go.tools/cmd/godoc
real    0m0.996s
user    0m0.881s
sys     0m0.118s

Under Go 1.3beta1 the time to recompile godoc‘s main package and link has dropped from 1.5 seconds to just under a second. A saving of half a second, or 30% compared to the performance of Go 1.2.1.

jujud

% rm -rf ~/pkg
% time /tmp/go1.2.1/bin/go install  launchpad.net/juju-core/cmd/jujud
real    0m8.247s
user    0m18.110s
sys     0m3.861s

Time to compile and link jujud from scratch, roughly 220 packages at this time, was 8.2 seconds using Go 1.2.1. Let’s look at the incremental performance.

% touch ~/src/launchpad.net/juju-core/cmd/jujud/main.go
% time /tmp/go1.2.1/bin/go install launchpad.net/juju-core/cmd/jujud
real    0m3.139s
user    0m2.831s
sys     0m0.305s

Which shows the time to recompile the main package and link the executable is 3.2 seconds. You can also see that the process is almost entirely single threaded as the sum of user and sys is equal to the wall clock time, real.

Let’s turn to Go 1.3beta1

% rm -rf ~/pkg
% time /tmp/go1.3beta1/bin/go install launchpad.net/juju-core/cmd/jujud
real    0m8.107s
user    0m20.533s
sys     0m3.574s

The full rebuild times are comparable to the Go 1.2.1 results, possibly a hair faster. The real improvements show themselves in the incremental compilation scenario.

% touch ~/src/launchpad.net/juju-core/cmd/jujud/main.go
% time /tmp/go1.3beta1/bin/go install launchpad.net/juju-core/cmd/jujud
real    0m2.219s
user    0m1.929s
sys     0m0.290s

Under Go 1.3beta1 the time to recompile the main package and link has dropped from 3.2 seconds to 2.2 seconds, a saving of one second, again roughly 30%.

In conclusion

In my tests, the linker improvements coming in Go 1.3 deliver approximately a 30% reduction in link time. Depending on the size of your final executable this could be a small amount, or a significant amount of time.

Overall the linking change has several important benefits:

    1. Because it’s performed in the compile stage, the result is stored in your $GOPATH/pkg directory. Effectively the instruction selection pass is cached, whereas previously it was recomputed for each binary linked even if they shared many common packages.
    2. Because more work is done in the compile stage, it is done in parallel if you have more than one CPU. If you have one CPU the end result is unchanged, the same amount of work is done, just at different phases, although you will benefit from point 1 regardless
    3. Because more work is done in the compilation stage, less work is done in the linker, so the files passed to the linker are smaller and the work it has to do, which is effectively a mark, sweep and compact over all the symbols presented, is less.

In short, the 1.3 linker rocks.

Accidental method value

This is a quick post to discuss an interesting bug that was recently unearthed by go vet.

The following code is a simplified reduction of a larger piece of code. In the original code the if statement was much larger, encompassing several complicated conditions, making the bug hard to spot visually.

package main

import "fmt"
import "io"

type Thing struct {
        Reader_ io.Reader
}

func (t *Thing) Reader() io.Reader { return t.Reader_ }

func main() {
        t := Thing{Reader_: nil}
        if t.Reader != nil {
                fmt.Println("wait a second")
        }
}

Running this code gives the result

% go run thing.go
wait a second

But … what is going on ? Thing.Reader_ is explicitly set to nil (even though this is unnecessary, the zero value of an interface field is nil), so how can the check for nil on the very next line fail?

Let’s look at what go vet thinks.

% go vet thing.go
thing.go:14: comparison of function Reader != nil is always true
exit status 1

The mistake in the original code was the author had intended to write t.Reader(), but perhaps forgot the parenthesis. The uncommon use of the underscore suffix possibly contributed to the bug.

So, a quick fix and a code review later and the bug was closed. But, why was this code valid in the first place ? The answer is, since Go 1.1, the expression t.Reader is no longer a syntax error, instead it evaluates to a Method Value.

Let’s look a little closer

t := Thing{Reader_: nil}
fmt.Printf("Reader_: %T\n", t.Reader_)
fmt.Printf("Reader(): %T\n", t.Reader())
fmt.Printf("Reader: %T\n", t.Reader)

gives the following output

Reader_: <nil>
Reader(): <nil>
Reader: func() io.Reader

The first line says t.Reader_ evaluates to nil, as expected. t.Reader() also evaluates to nil. However, on the third line t.Reader evaluates to a value whose type is func() io.Reader, and as we see from the initial example, because this method value is derived from a method defined at compile time, it cannot be nil, so the comparison is always true.

term: low level serial with a high level interface

I have several projects on the hop at the moment which require control over a serial port, actually a serial port emulated over USB. So for the last few days I’ve let myself be distracted by writing yet another serial package for Go.

github.com/pkg/term

term is built on a lower level package, called termios which provides access to the POSIX terimos(3) functions for fine grained control of the serial and terminal settings. As termios mirrors the POSIX interface, it should be reasonably portable. Anything which differs, such as supported baud rates, can be papered over in the higher level term package.

github.com/pkg/term/termios

term and termios have been tested on Linux and OS X, and should work for the other BSDs.

Suggestions for additional features via issue or pull request are most welcome.

autobench-next updated for Go 1.3

Now that go1.3beta1 has been released I’ve updated the autobench-next branch to track Go 1.2 vs tip (go1.3beta1).

Using autobench is very simple, clone the repository and run make to produce a benchmark on your machine.

% cd devel
% git clone -b autobench-next https://github.com/davecheney/autobench.git
% cd autobench
% make

You can stay up to date with the update target

% git pull 
% make update
% make

Contributions and benchmark results are always welcome. As the Go 1.3 cycle draws to a close I will merge this branch back into master replacing the older 1.1 vs 1.2 comparisons.

How to install multiple versions of Go

Introduction

This post presents one technique for installing and using multiple versions of Go on a machine. This is a technique I use often as we have standardised on Go 1.2.1 for developing Juju, but develop on the tip of Go itself.

You may find this technique useful for do comparisons between various Go versions for performance or validation.

This procedure mainly applies to Unix installations of Go, however assuming you have the correct toolchain, Windows users can apply it also.

Prerequests

There are two prerequisite before you begin

  1. Do not set GOROOT.
    You must not set $GOROOT. Unset it in your environment.
  2. Remove any existing versions of Go on your system.
    If you have installed Go via your operating system’s package manager, or via a tool like Homebrew, uninstall it before proceeding.

Installation

In this example I’m going to build the latest release of Go, 1.2.1, and the previous stable release 1.1.2. You can extend this pattern to handle other versions.

  1. Clone the Go sources.
    hg clone https://code.google.com/p/go $HOME/go
  2. Clone release working copies.
    Using the clone from the previous step, clone each version of Go using its specific release tag.

    hg clone $HOME/go -r go1.1.2 $HOME/go-1.1.2
    hg clone $HOME/go -r go1.2.1 $HOME/go-1.2.1
  3. Build each version of Go.
    cd $HOME/go-1.1.2/src && ./make.bash
    cd $HOME/go-1.2.1/src && ./make.bash

    If you prefer you can use ./all.bash to run the test suite.

  4. Setup aliases.
    Now you have built Go 1.2.1 and Go 1.1.2, you need to add the go tool for each version to your $PATH. A good way to add them to your path is to use an alias

    alias go-1.1.2=$HOME/go-1.1.2/bin/go
    alias go-1.2.1=$HOME/go-1.2.1/bin/go

    As an alternative, you could use ln -s to setup a symlink.

Usage

Now you can use these versions of the go tool anywhere you would use the normal go tool. For example

$ go-1.2.1 test $PACKAGE # compile and test $PACKAGE with Go 1.2.1
$ go-1.1.2 build $PACKAGE # build $PACKAGE with Go 1.1.2 (results in $CWD)

Caveats

There are several caveats when using this method.

  • Older versions of Go may not work with your system compiler.
    As you are building older software with newer tools you may encounter compilation failures.
    For example, Go versions less than 1.2 probably won’t work with XCode 5 due to the switch to clang.
  • Older versions of Go may not work with the Go subrepositories, or may not support newer features.
    For example the code.google.com/p/go.net/crypto/ssh package requires additional cipher suites added in Go 1.2 and won’t compile with Go 1.1.

Associative commentary follow up

This post is a follow up to Friday’s post on comments in Go.

Keith Rarick and Nate Finch pointed out that I had neglected to include two important practical use cases.

Build tags

I’ve previously written about how to use // +build tags to perform conditional compilation. In light of the previous post it’s probably worth recapping them here.

  • Build tags must use the // form.
    // +build right
    /* +build wrong */
  • Build tags must be their own comment, they must not be associated with a declaration.
    // Copyright Microsoft 1981
    
    // +build !darwin
    
    // Package basic implements Dartmouth's BASIC interpreter.  
    package basic
  • Build tags must occur early in the file. Only the first few lines of the file are scanned when filtering files by build tags.
    package wrong
    
    import "io"
    
    // +build whoops too,late

Copyright headers

The second is managing procedural issues if your licence requires you to include a copyright block at the top of source.

This was also briefly covered in the conditional compilation article. To recap

  • Most licences that recommend copyright headers require them to be at the top of the file, this means they must come before a package declaration, and its comment.
  • You probably don’t want the copyright header being part of your godoc, so the comment block holding the copyright header and the package declaration should be separated by a newline.
  • If you have any build tags, they should also appear between the copyright block and the package declaration. As all three are separate comment, they should be separated by a newline.
    // Copyright Commodore Inc, 1982
    
    // +build 6502
    
    // Package c64 is the computer for the masses, not the classes.
    package c64
  • If this leads to a verbose combination of copyright header, build tag, and package comment for godoc, consider moving the comment on the package declaration to a separate file. This is traditionally named doc.go and contains only the package declaration and its commentary.

Associative commentary

This is a quick post to discuss the rules of comments in Go.

To quickly recap, Go comments come in two forms

// everything from the double slash to the end of line is a comment
/* everything from the opening slash star, to the closing one is a comment */

As the first form declares that the remainder of the line is a comment, if you want to comment out more than one line, you need to do this

// this comment form is useful for
// commenting out sections of your code
// as you are working

The second form is also useful, and generally preferred, for large blocks of commentary

/*
The generally accepted rule when writing large
comment blocks in this form is to leave a newline
at the start and the end of your comment
*/

One important thing to note is that comments do not nest, thus

// // This is fine because everything from the double 
// // slash to the end of line is ignored

/* 
But, if you you were to start a new
/* comment inside an old one 
the closing star slash would close the comment block and */
this line would generate a syntax error 
*/

Association

A feature of the tools that consume Go source code, not the language, is the convention that a comment which directly preceeds a declaration is associated with that declaration.

// A Foo is a Fooid in the class of Endofoos.
func Foo() { .... }

Conversely, a comment followed by a newline stands alone, it’s just a comment.

package foo

// utility foos

func Quxx() { ... }

godoc allows comments to be associated with any of the top level declarations; package, var, const, type, and func.

import “C”

The trap that catches people out when they are using cgo is they don’t realise the significance of the newline, or more correctly, the lack of newline between their block of C code and the import "C" declaration.

package main

/*
#include "stdio.h"
*/
import "C"

func main() {
        C.printf(C.CString("Hello world\n"))
}

In this example the import "C" declaration is immediately preceded by the comment block containing our C code, in this case including stdio.h to obtain a reference to the printf function.

If there was a newline between the comment block and import "C" then the cgo preprocessor would not associate the comment with the import declaration and act as if #include "stdio.h" was never there.

% go run cgo.go
# command-line-arguments
37: error: use of undeclared identifier 'printf'

Update don’t forget to read the follow up to this post.

The empty struct

Introduction

This post explores the properties of my favourite Go data type, the empty struct.

The empty struct is a struct type that has no fields. Here are a few examples in named and anonymous forms

type Q struct{}
var q struct{}

So, if an empty struct contains no fields, contains no data, what use is it ? What can we do with it ?

Width

Before diving into the empty struct itself, I wanted to take a brief detour to talk about width.

The term width comes, like most terms, from the gc compiler, although its etymology probably goes back decades.

Width describes the number of bytes of storage an instance of a type occupies. As a process’s address space is one dimensional, I think width is a more apt than size.

Width is a property of a type. As every value in a Go program has a type, the width of the value is defined by its type and is always a multiple of 8 bits.

We can discover the width of any value, and thus the width of its type using the unsafe.Sizeof() function.

var s string
var c complex128
fmt.Println(unsafe.Sizeof(s))	 // prints 8
fmt.Println(unsafe.Sizeof(c))	 // prints 16

http://play.golang.org/p/4mzdOKW6uQ

The width of an array type is a multiple of its element type.

var a [3]uint32
fmt.Println(unsafe.Sizeof(a)) // prints 12

http://play.golang.org/p/YC97xsGG73

Structs provide a more flexible way of defining composite types, whose width is the sum of the width of the constituent types, plus padding

type S struct {
        a uint16
        b uint32
}
var s S
fmt.Println(unsafe.Sizeof(s)) // prints 8, not 6

The example above demonstrates one aspect of padding, that a value must be aligned in memory to a multiple of its width. In this case there are two bytes of padding added by the compiler between a and b.

Update Russ Cox has kindly written to explain that width is unrelated to alignment. You can read his comment below.

An empty struct

Now that we’ve explored width it should be evident that the empty struct has a width of zero. It occupies zero bytes of storage.

var s struct{}
fmt.Println(unsafe.Sizeof(s)) // prints 0

As the empty struct consumes zero bytes, it follows that it needs no padding. Thus a struct comprised of empty structs also consumes no storage.

type S struct {
        A struct{}
        B struct{}
}
var s S
fmt.Println(unsafe.Sizeof(s)) // prints 0

http://play.golang.org/p/PyGYFmPmMt

What can you do with an empty struct

True to Go’s orthogonality, an empty struct is a struct type like any other. All the properties you are used to with normal structs apply equally to the empty struct.

You can declare an array of structs{}s, but they of course consume no storage.

var x [1000000000]struct{}
fmt.Println(unsafe.Sizeof(x)) // prints 0

http://play.golang.org/p/0lWjhSQmkc

Slices of struct{}s consume only the space for their slice header. As demonstrated above, their backing array consumes no space.

var x = make([]struct{}, 1000000000)
fmt.Println(unsafe.Sizeof(x)) // prints 12 in the playground

http://play.golang.org/p/vBKP8VQpd8

Of course the normal subslice, len, and cap builtins work as expected.

var x = make([]struct{}, 100)
var y = x[:50]
fmt.Println(len(y), cap(y)) // prints 50 100

http://play.golang.org/p/8cO4SbrWVP

You can take the address of a struct{} value, when it is addressable, just like any other value.

var a struct{}
var b = &a

Interestingly, the address of two struct{} values may be the same.

var a, b struct{}
fmt.Println(&a == &b) // true

http://play.golang.org/p/uMjQpOOkX1

This property is also observable for []struct{}s.

a := make([]struct{}, 10)
b := make([]struct{}, 20)
fmt.Println(&a == &b)       // false, a and b are different slices
fmt.Println(&a[0] == &b[0]) // true, their backing arrays are the same

http://play.golang.org/p/oehdExdd96

Why is this? Well if you think about it, empty structs contain no fields, so can hold no data. If empty structs hold no data, it is not possible to determine if two struct{} values are different. They are in effect, fungible.

a := struct{}{} // not the zero value, a real new struct{} instance
b := struct{}{}
fmt.Println(a == b) // true

http://play.golang.org/p/K9qjnPiwM8

note: this property is not required by the spec, but it does note that Two distinct zero-size variables may have the same address in memory.

struct{} as a method receiver

Now we’ve demonstrated that empty structs behave just like any other type, it follows that we may use them as method receivers.

type S struct{}

func (s *S) addr() { fmt.Printf("%p\n", s) }

func main() {
        var a, b S
        a.addr() // 0x1beeb0
        b.addr() // 0x1beeb0
}

http://play.golang.org/p/YSQCczP-Pt

In this example it shows that the address of all zero sized values is 0x1beeb0. The exact address will probably vary for different versions of Go.

Wrapping up

Thank you for reading this far. At close to 800 words this article turned out to be longer than expected, and there was still more I was planning to write.

While this article concentrated on language obscura, there is one important practical use of empty structs, and that is the chan struct{} construct used for signaling between go routines

I’ve talked about the use of chan struct{} in my Curious Channels article.

Translations


Update Damian Gryski pointed out that I had omitted Brad Fitzpatrick’s iter package. I’ll leave it as an exercise to the reader to explore the profound implications of Brad’s contribution.