How does the go build command work ?

This post explains how the Go build process works using examples from Go’s standard library.

The gc toolchain

This article focuses on the gc toolchain. The gc toolchain takes its name for the Go compiler frontend, cmd/gc, and is mainly used to distinguish it from the gccgo toolchain. When people talk about the Go compilers, they are likely referring to the gc toolchain. This article won’t be focusing on the gccgo toolchain.

The gc toolchain is a direct descendant of the Plan 9 toolchain. The toolchain consists of a Go compiler, a C compiler, an assembler and a linker. Each of these tools are found in the src/cmd/ subdirectory of the Go source and consist of a frontend, which is shared across all implementations, and a backend which is specific to the processor architecture. The backends are distinguished by their letter, which is again a Plan 9 tradition. The commands are:

  • 5g, 6g, and 8g are the compilers for .go files for arm, amd64 and 386
  • 5c, 6c, and 8c are the compilers for .c files for arm, amd64 and 386
  • 5a, 6a, and 8a are the assemblers for .s files for arm, and64 and 386
  • 5l, 6l, and 8l are the linkers for files produced by the commands above, again for arm, amd64 and 386.

It should be noted that each of these commands can be compiled on any supported platform and this forms the basis of Go’s cross compilation abilities. You can read more about cross compilation in this article.

Building packages

Building a Go package involves at least two steps, compiling the .go files then packing the results into an archive. In this example I’m going to use crypto/hmac as it is a small package, only one source and one test file. Using the -x option I’ve asked go build to print out every step as it executes them

% go build -x crypto/hmac
WORK=/tmp/go-build249279931
mkdir -p $WORK/crypto/hmac/_obj/
mkdir -p $WORK/crypto/
cd /home/dfc/go/src/pkg/crypto/hmac
/home/dfc/go/pkg/tool/linux_arm/5g -o $WORK/crypto/hmac/_obj/_go_.5 -p crypto/hmac -complete -D _/home/dfc/go/src/pkg/crypto/hmac -I $WORK ./hmac.go
/home/dfc/go/pkg/tool/linux_arm/pack grcP $WORK $WORK/crypto/hmac.a $WORK/crypto/hmac/_obj/_go_.5

Stepping through each of these steps

WORK=/tmp/go-build249279931
mkdir -p $WORK/crypto/hmac/_obj/
mkdir -p $WORK/crypto/

go build creates a temporary directory, /tmp/go-build249279931 and populates it with some skeleton subdirectories to hold the results of the compilation. The second mkdir may be redundant, issue 6538 has been created to track this.

cd /home/dfc/go/src/pkg/crypto/hmac
/home/dfc/go/pkg/tool/linux_arm/5g -o $WORK/crypto/hmac/_obj/_go_.5 -p crypto/hmac -complete -D _/home/dfc/go/src/pkg/crypto/hmac -I $WORK ./hmac.go

The go tool switches the the source directory of crypto/hmac and invokes the go compiler for this architecture, in this case 5g. In reality there is no cd, /home/dfc/go/src/pkg/crypto/hmac is the supplied as the exec.Command.Dir field when 5g is executed. This means the .go source files can be relative to their source directory, making the command line shorter.

The compiler produces a single temporary output file in $WORK/crypto/hmac/_obj/_go_.5 which will be used in the final step.

/home/dfc/go/pkg/tool/linux_arm/pack grcP $WORK $WORK/crypto/hmac.a $WORK/crypto/hmac/_obj/_go_.5

The final step is to pack the object file into an archive file, .a, which the linker and the compiler consume.

Because we invoked go build on a package, the result is discarded as $WORK is deleted after the build completes. If we invoke go install -x two additional lines appear in the output

mkdir -p /home/dfc/go/pkg/linux_arm/crypto/
cp $WORK/crypto/hmac.a /home/dfc/go/pkg/linux_arm/crypto/hmac.a

This demonstrates the difference between go build and install; build builds, install builds then installs the result to be used by other builds.

Building more complex packages

You may be wondering what the pack step in the previous example does. As the compiler and linker only accept a single file representing the contents of the package, if a package contains multiple object files, they must be packed into a single .a archive before they can be used.

A common example of a package producing more than one intermediary object file is cgo, but that is too complicated for this article, instead a simpler example is a package that contains some .s assembly files, like crypto/md5.

% go build -x crypto/md5
WORK=/tmp/go-build870993883
mkdir -p $WORK/crypto/md5/_obj/
mkdir -p $WORK/crypto/
cd /home/dfc/go/src/pkg/crypto/md5
/home/dfc/go/pkg/tool/linux_amd64/6g -o $WORK/crypto/md5/_obj/_go_.6 -p crypto/md5 -D _/home/dfc/go/src/pkg/crypto/md5 -I $WORK ./md5.go ./md5block_decl.go
/home/dfc/go/pkg/tool/linux_amd64/6a -I $WORK/crypto/md5/_obj/ -o $WORK/crypto/md5/_obj/md5block_amd64.6 -D GOOS_linux -D GOARCH_amd64 ./md5block_amd64.s
/home/dfc/go/pkg/tool/linux_amd64/pack grcP $WORK $WORK/crypto/md5.a $WORK/crypto/md5/_obj/_go_.6 $WORK/crypto/md5/_obj/md5block_amd64.6

In this example, executed on a linux/amd64 host, 6g is invoked to compile two .go files, md5.go and md5block_decl.go. The latter contains the forward declaration for the functions implemented in assembly.

6a is then invoked to assemble md5block_amd64.s. The logic for choosing which .s to compile is described in my previous article on conditional compilation.

Finally pack is invoked to pack the Go object file, _go_.6, and the assembly object file, md5block_amd64.6, into a single archive.

Building commands

A Go command is a package who’s name is main. Main packages, or commands, are compiled just like other packages, but then undergo several additional steps to be linked into final executable. Let’s investigate this process with cmd/gofmt

% go build -x cmd/gofmt
WORK=/tmp/go-build979246884
mkdir -p $WORK/cmd/gofmt/_obj/
mkdir -p $WORK/cmd/gofmt/_obj/exe/
cd /home/dfc/go/src/cmd/gofmt
/home/dfc/go/pkg/tool/linux_amd64/6g -o $WORK/cmd/gofmt/_obj/_go_.6 -p cmd/gofmt -complete -D _/home/dfc/go/src/cmd/gofmt -I $WORK ./doc.go ./gofmt.go ./rewrite.go ./simplify.go
/home/dfc/go/pkg/tool/linux_amd64/pack grcP $WORK $WORK/cmd/gofmt.a $WORK/cmd/gofmt/_obj/_go_.6
cd .
/home/dfc/go/pkg/tool/linux_amd64/6l -o $WORK/cmd/gofmt/_obj/exe/a.out -L $WORK $WORK/cmd/gofmt.a
cp $WORK/cmd/gofmt/_obj/exe/a.out gofmt

The first six lines should be familiar, main packages are compiled like any other Go package, they are even packed like any other package.

The difference is the penultimate line, which invokes the linker to produce a binary executable.

/home/dfc/go/pkg/tool/linux_amd64/6l -o $WORK/cmd/gofmt/_obj/exe/a.out -L $WORK $WORK/cmd/gofmt.a

The final line copies and renames the completed binary to its final name. If you had used go install the binary would be copied to $GOPATH/bin (or $GOBIN if set).

A little history

If you go far enough back in time, back before the go tool, back to the time of Makefiles, you can still find the core of the Go compilation process. This example is taken from the release.r60 documentation

$ cat >hello.go <<EOF
package main

import "fmt"

func main() {
        fmt.Printf("hello, world\n")
}
EOF
$ 6g hello.go
$ 6l hello.6
$ ./6.out
hello, world

It’s all here, 6g compiling a .go file into a .6 object file, 6l linking the object file against the fmt (and runtime) packages to produce a binary, 6.out.

Wrapping up

In this post we’ve talked about how go build works and touched on how go install differs in its treatment of the compilation result.

Now that you know how go build works, and how to investigate the build process with -x, try passing that flag to go test and observe the result.

Additionally, if you have gccgo installed on your system, you can pass -compiler gccgo to go build, and using -x investigate how Go code is built using this compiler.