
THE PAST, PRESENT, AND FUTURE
OF GO 2
QCON SHANGHAI 2018

TODAY

Where Go came from?

How Go has evolved since it was launched?

What’s happening in Go 2?

THE PAST
2007–2009

WHY GO?

Why is their a language called Go?

We have C++, Java, C#, Python, Ruby, PHP, and
Javascript

Why did Rob Pike, Ken Thompson, and Robert
Griesemer decide to write a new language?

THE GO PROGRAMMING LANGUAGE, 2009

LANGUAGE DESIGN IN THE SERVICE OF SOFTWARE
ENGINEERING

A LANGUAGE FOR DEVELOPER PRODUCTIVITY

Together these presentations provide a rationale for a new
language, originally designed for Google's software
development needs.

As it turns out—because we all need software—Go has
become a pretty good fit for anyone writing large scale server
software.

Because, at its core, the goal of Go is to improve developer
productivity.

THE DIFFERENCE BETWEEN PROGRAMMING AND
SOFTWARE ENGINEERING

“Software engineering is what happens to
programming when you add time and other

programmers.”
—Russ Cox

THE DIFFERENCE BETWEEN PROGRAMMING AND
SOFTWARE ENGINEERING

The difference between software programming and
software engineering is not the size of the program, but
how long the program will live for.

Sitting down and writing a script or a throw away program
for a single computation is software programming.

That’s totally fine, sometimes that is all the problem calls
for.

THE DIFFERENCE BETWEEN PROGRAMMING AND
SOFTWARE ENGINEERING

On the other hand, Software engineering is a more
deliberate, considered, act.

It requires a broader view of the software development
lifecycle than just focusing on lines of code, syntax, and
algorythms.

When Go launched it was with the explicit intent to
improve the life of the software engineer.

THE PRESENT
2009–2018

THE PLATFORMS

When Go was open sourced on the 11th of November
2009 it supported Linux, Mac OS X, on 386, amd64,
and if you were running Linux, ARMv5 and v6.

By the time Go 1.0 was launched in March of 2012 we
added support for Windows, FreeBSD, OpenBSD

THE PLATFORMS
In Go 1.3 we added support for FreeBSD, DragonfyBSD, OpenBSD, and NetBSD,
Plan 9 on 386 and Native Client (NaCl), and Solaris on amd64

Go 1.4 added support for cross compling to Android, NaCl on ARM, and Plan 9
amd64

Go 1.5 added support for arm64 on Linux and OS X.

Go 1.6 added support for 64bit MIPS on Linux, and Android on 386

Go 1.7 added support for IBM System/z and 64 bit PowerPC

Go 1.8 added support for 32 bit MIPS

Go 1.11 added support for web assembly and plans are in the works for a RISC-V port

THE PERFORMANCE

THE COMPANIES

Atlassian, Heptio, Digital Ocean, Netflix, Pulimi,
Twitch, Google, Microsoft, Reddit, Cloudflare,
MongoDB, InfluxDB, Datadog, bookings.com, Rakuten,
GitHub, GitLab, Freelancer, Fastly, Netlify, Pivotal,
Couchbase, Lyft, Monzo, Uber, Source{d}, srcgraph, …

THE COMPANIES

……

THE PROJECTS

Vitess, Docker, Traefic, Kubernetes, Istio, GitLab, Vault,
Consol, Terraform, CockroachDB, CloudFoundry,
Gobot, Beego, …

THE BOOKS

HTTPS://GITHUB.COM/GOLANG/GO/WIKI/BOOKS

THE BOOKS

HTTPS://GITHUB.COM/GOLANG/GO/WIKI/BOOKS

THE COMMUNITY

GO MEETUPS IN CHINA

GO MEETUPS IN CHINA

GODOC.ORG, 800,000+ PACKAGES

THE CONFERENCES

GOPHERCON DENVER

GOPHERCON EU

DOTGO PARIS GOPHERCON SINGAPORE

GOPHERCON BRAZIL GOPHERCON UK

GO CONFERENCES IN CHINA

NEXT YEAR, GOPHERCHINA BEIJING

THE GOPHER
The Go gopher was designed by
Renee French. 

The design is licensed under the
Creative Commons 3.0
Attributions license.

THE GOPHER
The Go gopher was designed by
Renee French. 

The design is licensed under the
Creative Commons 3.0
Attributions license.

EGON ELBRE

TAKUYA UEDA

//LINUX.PICTURES 

IDGAF LICENSE

GITHUB.COM/GENGO/GOSHIP

ASHLEY MACNAMARA

THE GROWTH OF THE LANGUAGE

“My best estimate is now between 0.8 and 1.6
million. It seems to me likely that we've crossed  

 a million Go developers.”  
—Russ Cox, July 2018

THE FUTURE
2018–

THE BEGINNING OF GO 2

Gophercon 2017, Russ Cox announced it was time to start
talking about Go 2

https://blog.golang.org/toward-go2

Go 2 would not be an opportunity to redesign the language from
scratch.

Instead, Go 2 would be an evolution of Go 1, designed to address
pain points Go developers worldwide have felt for a decade.

https://blog.golang.org/toward-go2

THE BEGINNING OF GO 2

“Our goal for Go 2 is to fix the most significant
ways Go fails to scale.”

—Russ Cox, GopherCon 2017

HOW SHALL WE DISCOVER WHERE GO FAILED TO
SCALE?

In his presentation at Gophercon 2017 Russ discribed the methodology
for how the large issues which caused Go to fail at scale will be identified.

Specifically Russ called on the users of Go to write experience reports;
gists, blog posts, issues, that demonstrated clearly the issues that
developers were having using Go for increasingly larger and larger
projects.

https://github.com/golang/go/wiki/ExperienceReports

Now it’s a year later, what did the Go team discover?

https://github.com/golang/go/wiki/ExperienceReports

TOWARDS GO 2

TOWARDS GO 2

Top three pain points for Go developers:

TOWARDS GO 2

Top three pain points for Go developers:

•Dependency management – modules

TOWARDS GO 2

Top three pain points for Go developers:

•Dependency management – modules

•Error handling – check, handle, and error values

TOWARDS GO 2

Top three pain points for Go developers:

•Dependency management – modules

•Error handling – check, handle, and error values

•Generics

DEPENDENCY MANAGEMENT
GO MODULES

GO MODULES

The first improvement is the addition of a new concept to the Go
tool, a module.

A module is a collection of packages.

Just as we have .go source files grouped into a package, so too can a
collection of packages with shared prefix be considered a module.

Now, this probably looks pretty close to a concept that you aready
know, a git repository. But there is an important difference,
modules have an explicit understanding of versions.

WHY DO WE NEED GO MODULES?
Prior to Go modules, go get only knew how to fetch whatever
revision happened to be current in your repository at the time.

If you already had a copy of a package in your $GOPATH then
go get would skip it, so you might end up building against a
really old version.

If you used the go get -u flag to force it to download a fresh
copy, you might find that you now had a much newer version of a
package than the author.

GO GET DOES NOT PROVIDE REPRODUCIBLE
BUILDS

Put simply, go get doesn’t guarentee reproducible builds. We’ve had many people
propose solutions, tools like:

• godep

• gopkg.in

• govendor

• gb

Promoted the idea of a vendor/ directory, a self contained gopath that could be
checked in with the code so that your program had a copy of each of the
dependencies it needed.

THE PACKAGE MANAGEMENT WORKING GROUP

In 2016 Peter Bourgon formed a working group to focus on solving the
dependency management problem and called on the go team to join him
in this effort.

From that working group grew a tool we know as dep.

dep drew much of its inspiration from the authors experience with their
previous tools glide.

dep encouraged the use of semver, semantic versioning, using tags on
your git repos, to provide tools like dep with a way of managing the
contents of your vendor/ directory.

THE GO TEAM INTRODUCE MODULES

In early 2018 the Go team proposed their own tool, at the time given
the working title vgo, now known as go modules.

Go modules are integrated into the Go tool. The notion of modules
is baked in as a first class citizen.

This makes it possible for Go developers to build their code anywhere
they want.

Go modules don’t require a vendor/directory, and if you use modules
you no longer need to use GOPATH to hold all your Go source code.

GO MODULES LIVE DEMO

YOU CAN USE GO MODULES TODAY

Go 1.11, which shipped in August, includes full support
for modules.

It's opt-in at the moment, because we realise there is a
large change, not just for package authors but for the
ecosystem of tool authors

Experiment with converting your projects to use go.mod
and please give the Go team feedback via Github.

ERROR HANDLING
CHECK, HANDLE, AND ERROR VALUES

ERROR HANDLING IN GO

Unlike Java, Ruby, Python, or C#, Go does not use exceptions for
control flow.

Instead Go's error handling takes advantage of the language’s
native support for multiple return values.

func Open(path string) (*File, error)

By convention, if a function returns an error value, then the caller
should check if that error value to see if the operation succeeded
or failed.

ERROR HANDLING IN GO

By convention, if a function returns an error value, then the caller should check the
error value to see if the operation succeeded or failed.

f, err := os.Open("/etc/passwd")  
if err != nil {  
 return err  
}

Go developers believe that by being forced to think about failure case before the
success case, leads to more robust programs.

However, this form of error checking means it can feel repetitive to write this error
checking code by hand.

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

func CopyFile(src, dst string) error {  
 r, err := os.Open(src)  
 if err != nil {  
 return err  
 }  
 defer r.Close()  
 …  
}

func CopyFile(src, dst string) error {  
 r, err := os.Open(src)  
 if err != nil {  
 return err  
 }  
 defer r.Close()  
 …  
}
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 panic(err)  
}

func CopyFile(src, dst string) error {  
 r := check(os.Open(src))  
 defer r.Close()  
 …  
}
 
 
 
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 panic(err)  
}

func CopyFile(src, dst string) error {  
 r := check(os.Open(src))  
 defer r.Close()  
 …  
}
 
 
 
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 panic(err)  
}

Two values go into check

func CopyFile(src, dst string) error {  
 r := check(os.Open(src))  
 defer r.Close()  
 …  
}
 
 
 
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 panic(err)  
}

Two values go into check

One value comes out

func CopyFile(src, dst string) error {  
 r := check(os.Open(src))  
 defer r.Close()  
 …  
}
 
 
 
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 panic(err)  
}

check must return a value

func CopyFile(src, dst string) error {  
 r := check(os.Open(src))  
 defer r.Close()  
 …  
}
 
 
 
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 panic(err)  
}

check must return a value

Crashes the whole program ☹

func CopyFile(src, dst string) error {  
 r := check(os.Open(src))  
 defer r.Close()  
 …  
}
 
 
 
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 return err  
}

func CopyFile(src, dst string) error {  
 r := check(os.Open(src))  
 defer r.Close()  
 …  
}
 
 
 
 
func check(rc io.ReadCloser, err error) io.ReadCloser { 
 if err == nil {  
 return rc  
 }  
 return err  
}

We want to return the error 
here

CHECK IS ADDED TO THE LANGUAGE

Go programmers cannot write the own check functions
today as we cannot return to the caller of the caller of
check.

So the Go team are adding a new check keyword to
the language which does exactly this.

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

func CopyFile(src, dst string) error {
 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 defer w.Close()

 check io.Copy(w, r)
 check w.Close()  
 return nil
}

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

Will say “couldn’t open file”,
but why the file was being

opened is lost

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

Should cleanup failed copy
destination on failure

Will say “couldn’t open file”,
but why the file was being

opened is lost

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return err
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer w.Close()

 if _, err := io.Copy(w, r); err != nil {
 return err
 }
 if err := w.Close(); err != nil {
 return err
 }  
 return nil
}

Should cleanup failed copy
destination on failure

And remove copy if close fails

Will say “couldn’t open file”,
but why the file was being

opened is lost

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if _, err := io.Copy(w, r); err != nil {
 w.Close()
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if err := w.Close(); err != nil {
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 return nil
}

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if _, err := io.Copy(w, r); err != nil {
 w.Close()
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if err := w.Close(); err != nil {
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 return nil
}

Add context to the error so
we know what failed

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if _, err := io.Copy(w, r); err != nil {
 w.Close()
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if err := w.Close(); err != nil {
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 return nil
}

func CopyFile(src, dst string) error {
 r, err := os.Open(src)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 defer r.Close()

 w, err := os.Create(dst)
 if err != nil {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if _, err := io.Copy(w, r); err != nil {
 w.Close()
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 if err := w.Close(); err != nil {
 os.Remove(dst)
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }
 return nil
}

If we use check to remove the 
if err != nil block, there 

will be nowhere to put the
cleanup code

CHECK AND HANDLE

The solution the Go team are proposing a new statement called
handle.

You can think of handle as being similar to defer. Control
will transfer to the handle block if err != nil.

Just like defer, handle functions can appear anywhere during the
function. If a check fails, it transfers control to the innermost
handler, which transfers control to the next handler above it, and
so on, until a handler executes a return statement.

func CopyFile(src, dst string) error {
 handle err {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 handle err {
 w.Close()
 os.Remove(dst) // (only if a check fails)
 }

 check io.Copy(w, r)
 check w.Close()
 return nil
}

func CopyFile(src, dst string) error {
 handle err {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 handle err {
 w.Close()
 os.Remove(dst) // (only if a check fails)
 }

 check io.Copy(w, r)
 check w.Close()
 return nil
}

func CopyFile(src, dst string) error {
 handle err {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 handle err {
 w.Close()
 os.Remove(dst) // (only if a check fails)
 }

 check io.Copy(w, r)
 check w.Close()
 return nil
}

func CopyFile(src, dst string) error {
 handle err {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 handle err {
 w.Close()
 os.Remove(dst) // (only if a check fails)
 }

 check io.Copy(w, r)
 check w.Close()
 return nil
}

func CopyFile(src, dst string) error {
 handle err {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 handle err {
 w.Close()
 os.Remove(dst) // (only if a check fails)
 }

 check io.Copy(w, r)
 check w.Close()
 return nil
}

func CopyFile(src, dst string) error {
 handle err {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 handle err {
 w.Close()
 os.Remove(dst) // (only if a check fails)
 }

 check io.Copy(w, r)
 check w.Close()
 return nil
}

func CopyFile(src, dst string) error {
 handle err {
 return fmt.Errorf("copy %s %s: %v", src, dst, err)
 }

 r := check os.Open(src)
 defer r.Close()

 w := check os.Create(dst)
 handle err {
 w.Close()
 os.Remove(dst) // (only if a check fails)
 }

 check io.Copy(w, r)
 check w.Close()
 return nil
}

INSPECTING ERRORS

Go programmers have two main techniques for providing
information in errors. If the intent is only to describe a unique
condition with no additional data, a variable of type error suffices

var ErrUnexpectedEOF = errors.New("unexpected EOF")

Programs can act on such sentinel errors by a simple comparison:

if err == io.ErrUnexpectedEOF { ... }

INSPECTING ERRORS

To provide more information, the programmer can define a new
type that implements the error interface. For
example, os.PathError is a struct that includes a pathname.

Programs can extract information from these errors by using type
assertions:

if pe, ok := err.(*os.PathError); ok { ... pe.Path ... }

INSPECTING ERRORS
We could instead create a new type to hold additional details along with
the underlying error

if err != nil {  
 return &WriteError{Database: "users", Err: err} 
}

However, this could break the caller as type of the error has changed to
our WriteError type.

Either way, wrapping breaks both equality checks and type assertions
looking for the original error. This discourages wrapping, leading to less
useful errors.

ERRORS.UNWRAP
The first part of the design is to add a standard, optional interface implemented by errors that
wrap other errors:

package errors  
 
// A Wrapper is an error implementation  
// wrapping context around another error. 
type Wrapper interface {  
 // Unwrap returns the next error in the error chain. 
 // If there is no next error, Unwrap returns nil. 
 Unwrap() error  
}

Programs can inspect the chain of wrapped errors by using a type assertion to check for the
Unwrap method and then calling it.

IS AND AS

Wrapping errors breaks the two common patterns for acting on errors,
equality comparison and type assertion.

To reestablish those operations, the second part of the design adds
two new functions: errors.Is, which searches the error chain for a
specific error value.

// instead of err == io.ErrUnexpectedEOF  
if errors.Is(err, io.ErrUnexpectedEOF) { ... }

The errors.Is function is used instead of a direct equality check

IS AND AS

The second helper is errors.As, which searches the chain
for a specific type of error.

The errors.As function is used instead of a type assertion:

// instead of pe, ok := err.(*os.PathError) 
if pe, ok := errors.As(*os.PathError)(err); ok {  
 ... pe.Path ...  
 
}

ERROR HANDLING

check and handle for cleaning up error handling
boilerplate

errors.Is and errors.As for error inspection

GENERICS
🎉

WHY DO GO PROGRAMMERS WANT GENERICS?

WHY DO GO PROGRAMMERS WANT GENERICS?

func Max(a, b int) int {
 if a > b {
 return a
 }
 return b
}

WHY DO GO PROGRAMMERS WANT GENERICS?

func Max(a, b int) int {
 if a > b {
 return a
 }
 return b
} Only works with ints

GENERIC MAX IMPLEMENTATION

GENERIC MAX IMPLEMENTATION

func Max(a, b T) T {  
 if a > b {  
 return a  
 }  
 return b  
}

GENERIC MAX IMPLEMENTATION

func Max(a, b T) T {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B uint8 = 50, 90  
 result := Max(A, B)  
 fmt.Println(result)  
}

GENERIC MAX IMPLEMENTATION

func Max(a, b uint8) uint8 {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B uint8 = 50, 90  
 result := Max(A, B)  
 fmt.Println(result) // 90  
}

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b T) T {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B = "Hello", "QCon"  
 result := Max(A, B)  
 fmt.Println(result)  
}

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b string) string {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B = "Hello", "QCon"  
 result := Max(A, B)  
 fmt.Println(result) // "QCon"  
}

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b T) T {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B = []byte("Hello"), []byte("QCon") 
 result := Max(A, B)  
}

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b []byte) []byte {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B = []byte("Hello"), []byte("QCon") 
 result := Max(A, B)  
}

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b []byte) []byte {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B = []byte("Hello"), []byte("QCon") 
 result := Max(A, B)  
}

Compiler complains here

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b []byte) []byte {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B = []byte("Hello"), []byte("QCon") 
 result := Max(A, B)  
}

Compiler complains here

But the bug is actually here

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b T) T {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B float64 = 3.1417, math.NaN()  
 result := Max(A, B)  
 fmt.Println(result)  
}

THE PROBLEM WITH TEMPLATE SUBSTITUTION

func Max(a, b float64) float64 {  
 if a > b {  
 return a  
 }  
 return b  
}

func main() {  
 var A, B float64 = 3.1417, math.NaN()  
 result := Max(A, B)  
 fmt.Println(result) // ????  
}

THE PROBLEM WITH TEMPLATE SUBSTITUTION

We need a way of applying a constraint on which types
can be substituted for T

In other languages, like Java, this is called a type bound.

public static <T extends Number> T max(T a, T b) { ... }

Go doesn't have type inheretence, and we don't want to
add it, we see not having inheretence as a feature, not a
bug.

CONTRACTS

The suggestion the Go team have come up with is called a
contract.

A contract is a way to write down a list of requirements for a type
implementing T

contract comparable(t T) {  
 t > t  
 t << 1  
}

COMPARABLE CONTRACT

contract comparable(t T) {  
 t > t  
 t << 1  
}

COMPARABLE CONTRACT

contract comparable(t T) {  
 t > t  
 t << 1  
}

T must be a type with a greater 
than operator. This excludes slices, maps, 

channels, or structs.

COMPARABLE CONTRACT

contract comparable(t T) {  
 t > t  
 t << 1  
}

T must be a type with a greater 
than operator. This excludes slices, maps, 

channels, or structs.

T must be a type that can be shifted,  
this excludes float64.

HOW DO WE USE A CONTRACT?
contract comparable(t T) {
 t > t
 t << 1
}

func Max(type T comparable)(a, b T) T {
 if a > b {
 return a
 }
 return b
}

HOW DO WE USE A CONTRACT?
contract comparable(t T) {
 t > t
 t << 1
}

func Max(type T comparable)(a, b T) T {
 if a > b {
 return a
 }
 return b
} Formal parameters

HOW DO WE USE A CONTRACT?
contract comparable(t T) {
 t > t
 t << 1
}

func Max(type T comparable)(a, b T) T {
 if a > b {
 return a
 }
 return b
} Formal parameters

Return values

HOW DO WE USE A CONTRACT?
contract comparable(t T) {
 t > t
 t << 1
}

func Max(type T comparable)(a, b T) T {
 if a > b {
 return a
 }
 return b
} Formal parameters

Return values

Type parameter

THE GENERIC DILEMMA

The generics debate in Go is not new. Years ago Russ Cox wrote a short
post called the Generics Dilemma, on the three approaches to adding
generics to any language

1. Don't do it. This is the approach C tool, and, until now, the approach
Go chose.

2. Compile-time specialisation or template expansion. This is the C++
approach, It generates a lot of code, much of it redundant, and needs a
good linker to eliminate duplicate copies. This slows down compliation

3. Box everything and insert casts at runtime. This is the Java approach.

GO GENERICS DON'T DICTATE HOW THE COMPILER
WILL IMPLEMENT THEM

The important thing to recognise in this proposal is the syntax I shown in
the previous slides does not dictate how the feature will be implemented.

Unlike the C++ implementation which is explicitly defined to rely on
template text substitution, or the java solution which requires boxing
every patameter into an object, this proposal does not specify how the
compiler should implement this feature.

The Go compiler may choose to specialise a generic function at compile-
time or use run time boxing and casting. The decision becomes purely a
compiler optimization, not one of semantic significance.

WOULD YOU LIKE TO KNOW MORE?

If you'd like to know more, read the design documents, and
importantly contribute your feedback on these proposals at
this page

https://blog.golang.org/go2draft

Go modules implementation is much further along, as I
mentioned, its available to try in Go 1.11 today, so feedback
and experience reports are best directed to the issue tracker.

THERE WILL BE NO GO 2
AND THAT’S OK

STABILITY

Go developers recognise that over the last 9 years the
value Go has bought to you is not what has been added
to go, but what has not changed.

The value in Go is the huge base of software written in
the language that was defined in 2012, and which we’ve
been using productively since then.

BACKWARDS COMPATIBILITY

The value of Go is in the commitment to backwards
compatibility that the Go 1 contract bought us for the
last nine years.

ADOPTION

The value in language is all of you in this room today.
Because ultimately a programming language is only
successful if it has a large user base of people who are
happy to continue to use it.

TOWARDS GO 2

In a few months it will be December, then
January 2019.

2019 is a whole new year, distinct and separate
from the previous 365 days of 2018.

Yet, except for changing the year, January 1st
2019 will be in every other respect just a
continuation of December 31st, 2018.

TOWARDS GO 2

For all of the Go users today, Go 2 is not a single release
we're working towards.

Just like one day following the next, the progress of
small, frequent, releases will continue, adding these
features that I discussed today,—and maybe a few other
small tweaks—until one day we decide to call it Go 2.

THANK YOU!
ENJOY QCON SHANGHAI 2018

EGON ELBRE

