
Lessons learnt building
Kubernetes controllers

David Cheney - Heptio†

g’day

Contour
A Kubernetes Ingress Controller

Connaissez-vous
Kubernetes?

Kubernetes in one slide

• Replicated data store; etcd

• API server; auth, schema validation, CRUD operations
plus watch

• Controllers and operators; watch the API server, try to
make the world match the contents of the data store

• Container runtime; eg, docker, running containers on
individual hosts enrolled with the API server

Ingress-what controller?

Ingress controllers provide load
balancing and reverse proxying

as a service

An ingress controller should take
care of the 90% use case for
deploying HTTP middleware

Traffic consolidation

TLS management
TLS, SSL, Let’s Encrypt and all that good stuff

Abstract configuration
Describe your web application abstractly

Path based routing

What is Contour?

Why did Contour choose Envoy
as its foundation?

Envoy is a proxy designed for
dynamic configuration

Contour is the API server 
Envoy is the API client

Contour Architecture Diagram

EnvoyContourKubernetes

REST/JSON gRPC

Envoy handles configuration
changes without reloading

Kubernetes and Envoy interoperability

Ingress Service Secret Endpoints

LDS 😀 😀

RDS 😀

CDS 😀

EDS 😀

Kubernetes API objects

Envoy gRPC streams

Building software in a cloud
native world

Let’s explore the developer
experience building software for
Kubernetes from the micro to

the macro

As of the last release, Contour is
around 20800 LOC

5000 source, 15800 tests

😁

Do as little as possible in
main.main

main.main rule of thumb

• Parse flags

• Read configuration from disk / environment

• Set up connections; e.g. database connection,
kubernetes API

• Set up loggers

• Call into your business logic and exit(3) success or fail

Ruthlessly refactor your main
package to move as much code
as possible to its own package

• contour/
• apis/
• cmd/
• contour/

• internal
• contour/
• dag/
• e2e/
• envoy/
• grpc/
• k8s/

• vendor/

The actual contour command

Translator from DAG to Envoy

gRPC server; implements the 
xDS protocol

Kuberneters helpers

Envoy helpers; bootstrap config
Integration tests

Kubernetes abstraction layer

Name your packages for what
they provide, not what they

contain

Consider internal/ for
packages that you don’t want
other projects to depend on

Managing concurrency
github.com/heptio/workgroup

Contour needs to watch for
changes to  

Ingress, Services, Endpoints, and
Secrets

Contour also needs to run a
gRPC server for Envoy, and a

HTTP server for the  
/debug/pprof endpoint

// A Group manages a set of goroutines with related lifetimes.
// The zero value for a Group is fully usable without initalisation.
type Group struct {
 fn []func(<-chan struct{}) error
}

// Add adds a function to the Group.
// The function will be exectuted in its own goroutine when
// Run is called. Add must be called before Run.
func (g *Group) Add(fn func(<-chan struct{}) error) {
 g.fn = append(g.fn, fn)
}

// Run executes each registered function in its own goroutine.
// Run blocks until all functions have returned.
// The first function to return will trigger the closure of the channel
// passed to each function, who should in turn, return.
// The return value from the first function to exit will be returned to
// the caller of Run.
func (g *Group) Run() error {
 // if there are no registered functions, return immediately.

Register functions to be run 
as goroutines in the group

Run each function in its own 
goroutine; when one exits 

shut down the rest

var g workgroup.Group

client := newClient(*kubeconfig, *inCluster)

k8s.WatchServices(&g, client)
k8s.WatchEndpoints(&g, client)
k8s.WatchIngress(&g, client)
k8s.WatchSecrets(&g, client)

g.Add(debug.Start)

g.Add(func(stop <-chan struct{}) error {
 addr := net.JoinHostPort(*xdsAddr, strconv.Itoa(*xdsPort))
 l, err := net.Listen("tcp", addr)
 if err != nil {
 return err
 }
 s := grpc.NewAPI(log, t)

Make a new Group

Create individual watchers  
and register them with the 

group
Register the /debug/pprof server

Register the gRPC server

Start all the workers, 
wait until one exits

Now with extra open source

Dependency management with
dep

Gopkg.toml
[[constraint]]  
 name = "k8s.io/client-go"  
 version = "v8.0.0"

[[constraint]]  
 name = "k8s.io/apimachinery"  
 version = "kubernetes-1.11.4"

[[constraint]]  
 name = "k8s.io/api"  
 version = "kubernetes-1.11.4"

We don’t commit vendor/ to
our repository

% go get -d github.com/heptio/contour
% cd $GOPATH/src/github.com/heptio/contour
% dep ensure -vendor-only

If you change branches you may
need to run dep ensure

Not committing vendor/ does
not protect us against a

depdendency going away

What about go
modules?

TL;DR the future isn’t here yet

Living with Docker

.dockerignore

When you run docker build it
copies everything in your working
directory to the docker daemon

😴

% cat .dockerignore
/.git
/vendor

% cat Dockerfile
FROM golang:1.10.4 AS build
WORKDIR /go/src/github.com/heptio/contour

RUN go get github.com/golang/dep/cmd/dep
COPY Gopkg.toml Gopkg.lock ./
RUN dep ensure -v -vendor-only

COPY cmd cmd
COPY internal internal
COPY apis apis
RUN CGO_ENABLED=0 GOOS=linux go build -o /go/bin/contour \
 -ldflags=“-w -s" -v github.com/heptio/contour/cmd/contour

FROM alpine:3.8 AS final
RUN apk --no-cache add ca-certificates
COPY --from=build /go/bin/contour /bin/contour

only runs if Gopkg.toml or
Gopkg.lock have changed

Step 5 is skipped because  
Step 4 is cached

Try to avoid the  
docker build && docker push  

workflow in your inner loop

Local development against a live
cluster

Functional Testing

Functional End to End tests are terrible

• Slow …

• Which leads to effort expended to run them in
parallel …

• Which tends to make them flakey …

• In my experience end to end tests become a  
boat anchor on development velocity

So, I put them off as long as I
could

But, there are scenarios that unit
tests cannot cover …

… because there is a moderate
impedance mismatch between

Kubernetes and Envoy

We need to model the sequence
of interactions between
Kubernetes and Envoy

What are Contour’s e2e tests not testing?

• We are not testing Kubernetes—we assume it
works

• We are not testing Envoy—we hope someone
else did that

Contour Architecture Diagram

Contour EnvoyKubernetes

func setup(t *testing.T) (cache.ResourceEventHandler, *grpc.ClientConn, func()) {
 log := logrus.New()
 log.Out = &testWriter{t}

 tr := &contour.Translator{
 FieldLogger: log,
 }

 l, err := net.Listen("tcp", "127.0.0.1:0")
 check(t, err)
 var wg sync.WaitGroup
 wg.Add(1)
 srv := cgrpc.NewAPI(log, tr)
 go func() {
 defer wg.Done()
 srv.Serve(l)
 }()
 cc, err := grpc.Dial(l.Addr().String(), grpc.WithInsecure())
 check(t, err)
 return tr, cc, func() {
 // close client connection

Create a contour translator

Create a new gRPC server and 
bind it to a loopback address

Create a gRPC client and 
dial our server

Return a resource handler, 
client, and 

 shutdown function

// pathological hard case, one service is removed, the other 
// is moved to a different port, and its name removed.
func TestClusterRenameUpdateDelete(t *testing.T) {
 rh, cc, done := setup(t)
 defer done()

 s1 := service("default", "kuard",
 v1.ServicePort{
 Name: "http",
 Protocol: "TCP",
 Port: 80,
 TargetPort: intstr.FromInt(8080),
 },
 v1.ServicePort{
 Name: "https",
 Protocol: "TCP",

gRPC client, the output

Resource handler,
the input

Insert s1 into
API server

Query Contour
for the results

Low lights 😒

• Verbose, even with lots of helpers …

• … but at least it’s explicit; after this event from
the API, I expect this state.

High Lights 😁
• High success rate in reproducing bugs reported in the

field.

• Easy to model failing scenarios which enables Test
Driven Development 🎉

• Easy way for contributors to add tests.

• Avoid docker push && k delete po -l
app=contour style debugging

Thank you!
☞ github.com/heptio/contour

☞ @davecheney  
☞ dfc@heptio.com

Image: Egon Elbre

