GOING WITHOUT

(O SYDNEY USERS’ GROUP
NOVEMBER 2018



STATE



GLOBAL STATE



WHAT DO I MEAN WHEN 1 SAY GLOBAL STATE?

Universe Scope: base types 1nt, string, bool, etc.

Package Scope: variables, types, methods, functions,
constants

File scope: imports declarations
Function Scope: variables, types, constants

Block scope: variables, types, constants



MUTABLE GLOBAL STATE



WHY IS MUTABLE GLOBAL STATE BAD?



COUPLING

Package level variables exhibit source and run-time coupling.

Any code that can import my package can change the value ot a
public variable declared in my package.

It my program depends on the type of your package’s public
variable, it that changes, my program may not compile.

It my program depends on the contents of your package’s public
variable, it the contents change, my program will compile, but its
behaviour may change.



MUTABILITY

It my program depends on the contents of your
package’s public variable, 1f the contents change at run

time, that’s a data race.

A public variable cannot be sately mutated in the
presence of multiple goroutines. Anyone attempting to
do this must guard the mutation of a public variable
using a mutex



1T ESTABILITY

(slobal variables act like hidden parameters to every method
or function a program.

T'he every global variable in your program can be used to
smuggle state between unrelated concerns. It your functions
rely on that state, your tests need to closely manage that state.

(Global variables are unique, they can only have one value at
a time. Wave goodbye to test parallelism



GOING WITHOUT PACKAGE LEVEL
VARIABLES



WHAT WOULD GO LOOK LIKE IF WE COULD NO
LONGER DECLARE VARIABLES AT THE PACKAGE LEVEL?

What would be the impact of removing package scoped
variable declaraions from Go?

What could we learn about the design ot (Go programs
by doing so?

n.0. I'm only talking about elminating package level
variables, the other top level declarations are untouched.



IS THAT EVEN POSSIBLE?






REGISTRATION PATTERN

A registration pattern 1s followed by several packages 1n

the standard library; net/http, database/sql,
flag, and to a lesser extent 10g.

Registation 1involves an unexported package level map or

struct which 1s mutated by a public function—a textbook
singleton.




REGISTRATION PATTERN

Disallowing a package scoped placeholder tfor this state
would remove the side effects in the 1mage,

database/sql, and crypto packages to register
image decoders, database drivers and cryptographic
schemes.

However, this 1s precisely the spooky action at a distance
that the registration pattern encourages.



net/http.DefaultServeMux

When imported net/http/pprof registers a bunch of
handlers with, and only with, http.DefaultServeMux

Potentuial security 1ssue, other code cannot use
DefaultServeMux—or code that uses it indirectly—without
exposing the /debug/pprof endpoint.

T'he registration side eftect makes 1t difficult to persuade
net/http/pprof to register its handlers with a different mux.



REGISTRATION PROMOTES CONFUSING APIS

package http

// Serve accepts incoming HTTP connections on the listener
// 1, creating a new service goroutine for each. The service
// goroutines read requests and then call handler to

// reply to them.

//

// The handler 1s typically nil, 1n which case the

// DefaultServeMux 1s used.

func Serve(l net.Listener, handler Handler) error



1THERE’S MORE THAN ONE WAY TO DO IT

var 1 net.Listerner = ...

nttp.Serve(l, nil)
http.Serve(l, http.DefaultServeMux)



ONE NIL GOOD, TWO NILS BAD

http.Serve(nil, nil) // panic



const root = http.Dir("/htdocs")
http.Handle("/", http.FileServer(root))
http.ListenAndServe("0.0.0.0:8080", nil)



const root = http.Dir("/htdocs")
http.Handle("/", http.FileServer(root))
http.ListenAndServe("0.0.0.0:8080", http.DefaultServeMux)



const root = http.Dir("/htdocs")

mux .= http.NewServeMux()
mux.Handle("/", http.FileServer(root))
nttp.ListenAndServe("0.0.0.0:8080", mux)



E.SCHEW REGISTRATIONS

It package scoped variables were no longer used, rather than relying
on import side eftects, packages should provide a tunction that
registers them with the supplied object.

package pprof

// Register registers handlers for
// /debug/pproft.
func Register(mux http.ServeMux)



MODULES MIGHT RUIN THE PARTY

Avoiding the registry pattern avoids 1ssues with multiple
copies of the same package registering themselves during

1n1it()

T'his 1s likely to become more common as projects
migrate to (Go modules.

If you’re unlucky, updating your £0.mod file causes your
application to panic on startup.



SENTINEL ERRORS

10.EOF, sql.ErrNoRows,crypto/x509.ErrUnsupportedAlgorithm, ..



SENTINEL ERRORS

Sentinel errors introduce strong source and run-time
coupling

lo compare the error you have with the error you expect
you need to import the package that declares that error.



10.EOF IS A PUBLIC VARIABLE

10. EOF is a public variable. Any code that imports the 10 package could
change the value of 10.EOF.

package nelson
import "10"

func 1n1t() {
10.EOF = n1l // haha!

h



fmt.Println(10.EOF == 10.EOF) // true
X := 10.EOF
fmt.Println(1o0.EOF == x) // true

10.EOF = fmt.Errorf("whoops")
fmt.Println(10.EOF == 10.EOF) // true
fmt.Println(x == 10.EOF) // false



10.EOF IS A SINGLETON, NOT A CONSTANT

10. EOF behaves like a singleton, not a constant.

err .= errors.New("EOF") // 10/10.g80 line 38
fmt.Println(10.EOF == err) // false



SENTINEL ERRORS WITHOUT PUBLIC VARIABLES

It we prohibit package scoped variables this would
remove the ability to use public variables tor sentinel
error values.

If we can’t declare errors as variables, what could be
used to replace them?

Ideally sentinel value should behave as constants. '1'hey
should be immutable and tungible.



ERROR INTERFACE RECAP

Any type with an
Error() string

method tulfils the error intertace.

This includes primitive types like String,
specifically constant strings.



CONSTANT ERRORS

type Error string

func (e Error) Error() string {
return string(e)

}



CONSTANT ERRORS ARE CONSTANTS

const err = Error("EOF™)

const err2 = errorString{"EOF"} //
const 1nitializer errorString literal
1S not a constant



CONSTANT ERRORS ARE IMMUTABLE

const err Error = "EOF"
err = Error("not EOF")
// error, cannot assign to err



CONSTANT ERRORS ARE EQUAL IF THEIR VALUES ARE
EQUAL

const err = Error("EOF")
fmt.Println(err == Error("EOF")) // true



type Reader struct{}

func (r *Reader) Read([]byte) (int, error) {
return 0, errors.New("eof")

h

func main() {
var eof = errors.New("eof")
var r Reader
_, err := r.Read([]byte{})
fmt.Println(err == eof) // false



type Reader struct{}

func (r *Reader) Read([]byte) (int, error) {
return 0, Error("eof")

h

func main() {
const eof Error = "eof"
var r Reader
_, err := r.Read([]byte{})
fmt.Println(err == eof) // true



COULD WE CHANGE THE DEFINITION OF 10.EOF TO
BE A CONSTANT?

It turns out that this compiles just fine and passes almost
all the tests (when I first did this experiment two years

ago ./all.bash passed cleanly).
[t’s not worth fixing the one failing test to prove a point.

But this does not mean you cannot use a constant error
type 1f you need to declare a sentinel error.



WHAT ABOUT PRIVATE ERROR VARIABLES?

package sql

var errDBClosed = errors.New("sql:
database 1s closed")



INTERFACE SATISFACTION ASSERTIONS

'T'he intertace satistaction 1diom
var _ Somelnterface = new(SomeType)

occurred at least 19 times 1n the standard library.



func TestSomeTypelmplementsSomelnterface(t *testing.T) {
// won't compile 1f SomeType does not
// 1mplement Somelnterface
var _ Somelnterface = new(SomeType)



func TestSomeTypelImplementsSomelInterface(t *testing.T) {
var 1 1nterface{} = new(SomeType)
if , ok := 1.(Somelnterface):; !ok {
t.Fatalf(“%t doesn’'t implement Somelnterface", 1)

}



REAL SINGLETONS

0s.Stdin, os.Stdout, os.Stderr



package os

var (
Stdin = NewFile(uintptr(syscall.Stdin), "/dev/stdin")
Stdout = NewFile(uintptr(syscall.Stdout), "/dev/stdout")
Stderr = NewFile(uintptr(syscall.Stderr), "/dev/stderr")



type readfd int

func (r readfd) Read(buf []byte) (int, error) {
return syscall.Read(int(r), buf)

}

type writefd int

func (w writefd) Write(buf []byte) (int, error) {
return syscall.Write(int(w), buf)

}

const (
Stdin = readfd(0)
Stdout = writefd(1)
Stderr = writefd(2)

)

func main() {
fmt.Fprintf(Stdout, "Hello world")

}



A BRIDGE TOO FAR?

Is 1t possible to ehminate package level variables? No

Should we act as if 1t was? Yes



A MIDDLE GROUND

Avoid public vanables. A variable that can be changed by any
party that knows its name 1s a red flag.

Replace public variable declarations with constants where

possible

Replace public variables with function parameters and striuct

fields.

Use intertaces to declare—without stipulating how—the
behaviour your function requires.



ONE MORE THING



func main() {

stop := make(chan 1int)
go func() {
for {
select {
case <-stop:
return
default:
p, _ := filepath.Abs("file.txt")
fmt.Println(p)
}
}
F()
dl, _ := 1ioutil.TempDir("", "")
d2, _ := 1outil.TempDir("", "")
for 1 := 0; 1 < 20; 1++ {

0s.Chdir(d1)
0s.Chd1ir(d2)



% go run chdir.go

/Users/dfc/1Cloud/presentations/file. txt
/Users/dfc/1Cloud/presentations/file. txt
/private/var/folders/by/3gt34_z95zg05cyj744_vhx40000gn/T/409841509/f1le.
/private/var/folders/by/3gt34_z95zg05cyj744_vhx40000gn/T/409841509/f1le.
/private/var/folders/by/3gt34_z95zg05cyj744_vhx40000gn/T/155712896/f1le.
/private/var/folders/by/3gt34_z95zg05cyj744_vhx40000gn/T/409841509/f1le.
/private/var/folders/by/3gt34_z95zg05cyj744_vhx40000gn/T/409841509/f1le.
/private/var/folders/by/3gt34_z95zg05cyj744_vhx40000gn/T/155712896/f1le.

Xt
Xt
Xt
Xt
Xt
Xt



package main
import "log"
func main() {

1T err := Main(); err != nil {
log.Fatal(err)

}

func Main() error {
// actual main function

}



type Context struct {
Stdin 10.Reader
Stdout, Stderr 1o0.Writer
Workdir string

¥

func main() {
wd, err := os.Getwd()
check(err)

ctx := &Context{
Stdin: 0s.Stdin,
Stdout: os.Stdout,
Stderr: os.Stderr,

Workdir: wd,
}
err = Main(ctx)
check(err)

}

func check(err error) {
1f err !'= nil {
log.Fatal(err)



ARE THESE REALLY SINGLETONS?

0s.Stdin, os.Stdout, os.Stderr
0s.Getwd()

0S.Args()

0S.Getenv()

time.Now()



(\.

1T HANK YOU!

HAVE A HAPPY AND SAFE NEW YEAR!
THANK YOU FOR SUPPORTING THE MEET UP!

N\

1©
\

Image: Egon Elbre



