
How Heptio Built
Contour

Any What You Can Learn From
Our Experiences

What does an Ingress
Controller do?

Ingress
To step in

Ingress controllers have 99
problems, but service discovery,
cross cluster replication, outgoing 

NAT, are not some of them

Why can’t I just use a Service
type: LoadBalancer?

(Dave’s) Philosophy of Ingress

An ingress controller should
take care of the 90% case

Getting to the 90% case
Traffic consolidation

TLS management

Abstract configuration

Reverse proxy table stakes

Path based routing

HTTP → HTTPS 3xx redirects

(limited) Request rewriting

What is Contour?

Why did Contour choose Envoy
as its foundation?

Contour is the control plane 
Envoy is the data plane

Envoy is a proxy designed for
dynamic configuration

Contour is the API server  
Envoy is the API client

Contour Architecture Diagram

🤖
Kubernetes

🐨
Contour

🦄
Envoy

REST/JSON gRPC

Envoy handles configuration
changes without reloading

Kubernetes and Envoy interoperability

Ingress Service Endpoints Secret

LDS 😀 😀

RDS 😀

CDS 😀

EDS 😀

Contour, the project

As of April 30, Contour is
around 9900 LOC
2900 source, 7000 tests

😁

Do as little as possible in
main.main

Ruthlessly refactor your main
package to move as much code
as possible to its own package

contour
!"" cmd
$"" contour
!"" internal
!"" contour
!"" e2e
!"" envoy
!"" grpc
!"" k8s
$"" workgroup
$"" vendor

The actual contour command

The translator; turns k8s 
objects into Envoy

gRPC server; implements the 
xDS protocol

Kuberneters helpers
Goroutine helpers

Envoy helpers; bootstrap config
Integration tests

Consider internal/ for
packages that you don’t want
other projects to depend on

Goroutine management
github.com/heptio/contour/internal/workgroup

Contour needs to watch for
changes to  

Ingress, Services, Endpoints,
and Secrets

Contour also needs to run a
gRPC server for Envoy, and a

HTTP server for the  
/debug/pprof endpoint

// Group manages a set of goroutines with related lifetimes.
type Group struct {
 fn []func(<-chan struct{})
}

// Add adds a function to the Group.
// The function will be exectuted in its own
// goroutine when Run is called.
func (g *Group) Add(fn func(<-chan struct{})) {
 g.fn = append(g.fn, fn)
}

// Run exectues each function registered with Add in
// its own goroutine.
// Run blocks until each function has returned.
// The first function to return will trigger the closure of
the channel

Register functions to be run 
as goroutines in the group

Run each function in its own 
goroutine; when one exits 

shut down the rest

var g workgroup.Group

client := newClient(*kubeconfig, *inCluster)

k8s.WatchServices(&g, client)
k8s.WatchEndpoints(&g, client)
k8s.WatchIngress(&g, client)
k8s.WatchSecrets(&g, client)

g.Add(debug.Start)

g.Add(func(stop <-chan struct{}) {
 addr := net.JoinHostPort(*xdsAddr, strconv.Itoa(*xdsPort))
 l, err := net.Listen("tcp", addr)
 if err != nil {
 log.Errorf("could not listen on %s: %v", addr, err)
 return
 }

Make a new Group

Create individual watchers  
and register them with the 

group
Register the /debug/pprof server

Register the gRPC server

Start all the workers, 
wait until one exits

Prefer crash only software

Handling concurrency
github.com/heptio/contour/internal/k8s.Buffer

Watchers call back to Contour concurrently

🤖
Kubernetes

🐨
Contour

Ingress

Services

Endpoints

Secrets

Kubernetes and Envoy interoperability

Ingress Service Endpoints Secret

LDS 😀 😀

RDS 😀

CDS 😀

EDS 😀

sync.Mutex  
to the rescue …

Channels to the rescue

func NewBuffer(g *workgroup.Group, rh cache.ResourceEventHandler, size int)
cache.ResourceEventHandler {
 buf := &buffer{
 ev: make(chan interface{}, size),
 rh: rh,
 }
 g.Add(buf.loop)
 return buf
}

func (b *buffer) OnAdd(obj interface{}) {
 b.send(&addEvent{obj})
}

func (b *buffer) OnUpdate(oldObj, newObj interface{}) {
 b.send(&updateEvent{oldObj, newObj})
}

func (b *buffer) OnDelete(obj interface{}) {
 b.send(&deleteEvent{obj})
}

Create new buffer; register  
with group

Buffer fulfills the 
ResourceEventHandler 

interface
Send forwards ResourceEvents  

to a channel

Loop takes events off the channel, 
calls the backing handler, until 

the group tells it to stop

Dependency management with
dep

Gopkg.toml
[[constraint]]  
 name="k8s.io/client-go"  
 version=“v7.0.0"

[[constraint]]  
 name="k8s.io/api"  
 branch=“release-1.10"

[[constraint]]  
 name="k8s.io/apimachinery"  
 branch="release-1.10"

We don’t commit vendor/ to
our repository

% go get -d github.com/heptio/contour
% cd $GOPATH/src/github.com/heptio/contour
% dep ensure -vendor-only

What about vgo?
TL;DR vgo can’t handle 

client-go, yet

Living with Docker

.dockerignore

When you run docker build it
copies everything in your

working directory to the docker
daemon 😴

% cat .dockerignore
/.git
/vendor

% cat Dockerfile
FROM golang:1.10
WORKDIR /go/src/github.com/heptio/contour

RUN go get github.com/golang/dep/cmd/dep
COPY Gopkg.toml Gopkg.lock ./
RUN dep ensure -v -vendor-only

COPY cmd cmd
COPY internal internal
RUN CGO_ENABLED=0 GOOS=linux go install -ldflags="-w -s" -v
github.com/heptio/contour/cmd/contour

FROM alpine:latest
RUN apk --no-cache add ca-certificates
COPY --from=0 /go/bin/contour /bin/contour

only runs if Gopkg.toml or
Gopkg.lock have changed

Try to avoid the  
docker build && docker push  

workflow in your inner loop

Local development against a
live cluster

Functional Testing

Functional End to End tests are terrible

•Slow …

•Which leads to effort expended to run them in
parallel …

•Which tends to make them flakey …

•IMO end to end tests become a boat  
anchor on velocity

So, I put them off as long as I
could

But, there are scenarios that
unit tests cannot cover …

… because there is a moderate
impedance mismatch between

Kubernetes and Envoy

We need to model the
sequence of interactions

between Kubernetes and Envoy

What are Contour’s e2e tests not testing?

•We are not testing Kubernetes (we
assume it works)

•We are not testing Envoy (we hope
someone else did that)

Contour Architecture Diagram

🤖
Kubernetes

🐨
Contour

🦄
Envoy

func setup(t *testing.T) (cache.ResourceEventHandler, *grpc.ClientConn, func()) {
 log := logrus.New()
 log.Out = &testWriter{t}

 tr := &contour.Translator{
 FieldLogger: log,
 }

 l, err := net.Listen("tcp", "127.0.0.1:0")
 check(t, err)
 var wg sync.WaitGroup
 wg.Add(1)
 srv := cgrpc.NewAPI(log, tr)
 go func() {
 defer wg.Done()
 srv.Serve(l)
 }()
 cc, err := grpc.Dial(l.Addr().String(), grpc.WithInsecure())
 check(t, err)
 return tr, cc, func() {
 // close client connection

Create a contour translator

Create a new gRPC server and 
bind it to a loopback address

Create a gRPC client and 
dial our server

Return a resource handler, 
client, and 

 shutdown function

// pathological hard case, one service is removed, the other 
// is moved to a different port, and its name removed.
func TestClusterRenameUpdateDelete(t *testing.T) {
 rh, cc, done := setup(t)
 defer done()

 s1 := service("default", "kuard",
 v1.ServicePort{
 Name: "http",
 Protocol: "TCP",
 Port: 80,
 TargetPort: intstr.FromInt(8080),
 },
 v1.ServicePort{
 Name: "https",
 Protocol: "TCP",

gRPC client, the output

Resource handler,
the input

Insert s1 into
API server

Query Contour
for the results

Low lights 😒

•Verbose, even with lots of helpers …

•… but at least it’s explicit; after this
event from the API, I expect this state.

High Lights 😁
•High success rate in reproducing bugs reported in the

field.

•Easy way for contributors to add tests.

•Easy to model failing scenarios which enables Test
Driven Development 🎉

•Avoid docker push && k delete po -l
app=contour style debugging

Thank you for listening!
Questions?  

@davecheney — dfc@heptio.com

