

ABSOLUTE UNIT (TEST)

GO SYDNEY USERS’ GROUP

1 HIS IDEA STARTS WITH TESTING

TEST DRIVEN DEVELOPMENT

® e ® New Tab X +

C G testdriven development is I E‘m O

test driven development is - Google Search Other Bookmarks

test driven development is dead - o O

test driven development is bad

i) Go Build Dz

test driven development is not an xp practice

test driven development is a waste of time

L0 L0 L L0 L

test driven development is an xp practice

Google

WHOSE IDEA WAS 1 DD ANYWAY?

Uncle Bob Martin
Martin Fowler
Kent Beck

Alan Perlis

A software system can best be designed 1f the testing 1s
interlaced with the designing instead of being used after

the design.

-Alan Perlis, NATO Software Engineering Conference, 1968

® ®@® [ArticleS.UncleBob.TheThreeRi X =+

<& C' (@ Not Secure | butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd Q W I 93 0

ArticleS. UncleBob.

but

:
:

TheThreeRulesOfTdd [add child]

Properties
Refactor

Where Used

Files
Versions
Recent Changes |

User Guide

THE THREE Laws oF TDD.

. Over the years | have come to describe Test Driven Development in terms of three simple rules. They are:

1. You are not allowed to write any production code unless it is to make a failing unit test pass.

2. You are not allowed to write any more of a unit test than is sufficient to fail; and compilation failures are
failures.

3. You are not allowed to write any more production code than is sufficient to pass the one failing unit test.

. You must begin by writing a unit test for the functionality that you intend to write. But by rule 2, you can't write

. very much of that unit test. As soon as the unit test code fails to compile, or fails an assertion, you must stop anc
. write production code. But by rule 3 you can only write the production code that makes the test compile or pass,
. and no more.

. If you think about this you will realize that you simply cannot write very much code at all without compiling and
. executing something. Indeed, this is really the point. In everything we do, whether writing tests, writing producti

code, or refactoring, we keep the system executing at all times. The time between running tests is on the order o

. seconds, or minutes. Even 10 minutes is too long.

. Too see this in operation, take a look at The Bowling Game Kata.

MY LIFE WITH 1 DD

It I knew what I wanted to write, then writing the tailing
test first was easy.

It | didn’t know what 1 was writing, the cost of
experimentation started at 200%; change the code, fix
the test.

T'his cost went up and to the right when one function
called another.

CHANGING WELL COVERED CODE
FEELS SAFE, CHANGING THE TESTS
FEELS LIKE CHEATING

B # DevTernity 2017: lan Coopc X —+

C & https://www.youtube.com/watch?v

> YouTube

- TDD, where did it all go wrong?

v

N

=N
) =y

> Pl o) 0:01/1:03:54

% DevTernity 2017: lan Cooper - TDD, Where Did It All Go Wrong

AUTOPLAY

Test

THE SUT IS NOT THE CLASS

WHAT IS THE UNIT OF CODE IN A C
PROGRAM?

WHAT IS THE UNIT OF CODE IN A
JAVA PROGRAM?

WHAT IS THE UNIT OF CODE IN A
(GO PROGRAM?

(o packages embody the spirit of the UNIX
philosophy. Go packages interact with one another via
interfaces. Programs are composed, just like the UNIX

shell, by combining packages together.

—Me, a few years ago

THE UNIT GO SOFTWARE IS THE
PACKAGE

TEST BEHAVIOUR, NOT
IMPLEMENTATION

LET’S MAKE THIS CONCRETE

T'he product I've been working on for the last 14 months 1s
eftectively a translator from k3s objects to gRPC objects.

Betore I applied these 1deas, 1 would have to write out the
translations twice; once 1n code, once for the test fixtures.

Whenever the logic would change, I’'d have to change the
test. Whenever the gRPC definitions would change, I'd
have to change both the business logic and the test.

REFACTOR WITH CONFIDENCE

I moved all the gRPC translation logic to its own package, tested
in 1solation from the k8s mechanics.

Only test public functions ot that package (almost everything 1s
now a public function)

Business logic and the gRPC generation now separate, we can
use the gRPC 1n both business logic and tests.

Changes to the gRPG definitions were contained to one package.

IN A NUTSHEL.L

ILach Go package 1s a selt contained unat.
lest your package’s behaviour, not their implementation.

More importantly, design your packages around their
behaviour, not their implementation.

1 HE UNIT IS NOT THE FUNCTION

1'DD doctrine states that you shall not write a line ot
production code until you have a failling unit test.

T'he result 1s every helper or private tunction nside your
package has a test, and those tests break all the time when
you refactor.

1'his wasted work discourages refactoring. 'T'here 1s a risk that
the tests will end up fitting the observed behaviour of the
code under test, not asserting the expected behaviour.

1 HE UNIT OF CODE IS THE PACKAGE

In Go the unit of code 1s the package. You only need to test the
behaviour of your package that can be observed.

Code coverage 1s your guide. It there are branches that cannot be
covered via the public API, delete that code.

When you refactor, use coverage to tell you where you need to
add tests. Beware Hyrum’s Law.

It you have high coverage, consider adding tuzz testing to check
that you've covered all the edge cases.

DON T BE A STOOGE WATCH THIS TALK.

<& C @& https://www.youtube.com

» YouTube Search T -]

N did it all go wrong =T
“
A .
. DevTernity
|
I & =

https://youtu.be/EZ05e7EMOLM

