




Absolute Unit (test)
Go London User Group



This idea starts with testing



Test Driven Development



Test Driven Development





Whose idea was TDD anyway?



Whose idea was TDD anyway?

Uncle Bob Martin



Whose idea was TDD anyway?

Uncle Bob Martin

Martin Fowler



Whose idea was TDD anyway?

Uncle Bob Martin

Martin Fowler

Kent Beck



Whose idea was TDD anyway?

Uncle Bob Martin

Martin Fowler

Kent Beck

Alan Perlis



–Alan Perlis, NATO Software Engineering Conference, 1968  
(source https://www.infoq.com/presentations/1-9-6-8)

“A software system can best be designed if  the testing is 
interlaced with the designing instead of  being used after 

the design.”

https://www.infoq.com/presentations/1-9-6-8


I hold it as an article of  faith that 
writing tests at the same time as the 
code is a good thing.





My life with TDD

If  I knew what I wanted to write, then writing the failing 
test first was easy. 

If  I didn’t know what I was writing, the cost of  
experimentation started at 200%; change the code, fix the 
test. 

This cost went up and to the right when one function 
called another.



Changing well covered code felt 
safe, changing the tests felt like 
cheating









The SUT is not the class

System
Under

Test



What is the unit of  code in a C 
program? 



What is the unit of  code in a Java 
program?



What is the unit of  code in a Go 
program?



–Me, a few years ago

“Go packages embody the spirit of  the UNIX philosophy. 
Go packages interact with one another via interfaces. 
Programs are composed, just like the UNIX shell, by 

combining packages together.”



The unit of  software in Go is the 
package



Test the behaviour of  your unit, not 
its implementation



The public API of  a package 
declares this is what I do, not this is 
how I do it



The public API of  a package 
declares this is what I do, not this is 
how I do it

Behaviour



The public API of  a package 
declares this is what I do, not this is 
how I do it

Behaviour

Implementation



The unit is not the function
TDD doctrine states that you shall not write a line of  
production code until you have a failing unit test. 

The result is every helper or private function inside your 
package has a test, and those tests break all the time when you 
refactor. 

This wasted work discourages refactoring. There is a risk that 
the tests will end up fitting the observed behaviour of  the 
code under test, not asserting the expected behaviour. 



The unit of  code is the package
In Go the unit of  code is the package. You only need to test the 
behaviour of  your package that can be observed. 

Code coverage is your guide. If  there are branches that cannot be 
covered via the public API, delete that code. 

When you refactor, use coverage to tell you where you need to add 
tests. Beware Hyrum’s Law. 

If  you have high coverage, consider adding fuzz testing to check 
that you’ve covered all the edge cases.



Let’s make this concrete

The product I’ve been working on for the last 14 months 
is effectively a translator from k8s objects to gRPC objects. 

Before I applied these ideas, I would have to write out the 
translations twice; once in code, once for the test fixtures. 

Whenever the logic would change, I’d have to change the 
test. Whenever the gRPC definitions would change, I’d 
have to change both the business logic and the test.



Refactoring with impunity

I moved all the gRPC translation logic to its own package, tested 
in isolation from the k8s mechanics. 

Only test public functions of  that package (almost everything is 
now a public function) 

Business logic and the gRPC generation now separate, we can 
use the gRPC in both business logic and tests. 

Changes to the gRPC definitions were contained to one package.















Guidelines, not rules



Guidelines, not rules
You should write tests.



Guidelines, not rules
You should write tests.

You should write tests at the same time as you write your code.



Guidelines, not rules
You should write tests.

You should write tests at the same time as you write your code.

Each Go package is a self  contained unit.



Guidelines, not rules
You should write tests.

You should write tests at the same time as you write your code.

Each Go package is a self  contained unit.

Your tests should assert the observable behaviour of  your 
package, not its implementation.



Guidelines, not rules
You should write tests.

You should write tests at the same time as you write your code.

Each Go package is a self  contained unit.

Your tests should assert the observable behaviour of  your 
package, not its implementation.

You should design your packages around their behaviour, not 
their implementation.



Don’t be a stooge, watch this talk.

https://youtu.be/EZ05e7EMOLM


