-~
: i ..".
S 3_ o -
" k % » 5
i B e
) e AR N "'»:-“ﬁ."' s W T
5 LRI \’ > ’v .%‘"_:l‘k§\r o N r ’.
\ et N)‘. . R T N e B R~ 4
X R e SO
= '\#,'.:'.‘f{.;*"l\' '.'.-';; : : s
3 \ . % ‘ -

o e N). 3

. . ’
5 » .(x .l" ; ’ * . ’.
~ . o g F-.g'} ‘”‘ - A
- "'z . ‘-.'-
, g & 2 . "\w - .¢."‘%',. ".‘N ’~ ‘\
" , - ’
-~ » % y“t - . g &
o’ M‘.’" - - -
A : mﬁ A Al f
)& Y: - “ * - ’ g
=* - 3 ~'y - . y e
- . T 3 4 : - 0 o a a
» \tf‘{'—l‘*gfx\n-"’k £ Ch Fa-< - T
‘Mc“ ?r‘ B L . \J“l < - Y Py ‘. :‘ -3
- ‘w. j{zy : . ,’,b. . o - %% : Jof
~ 38 ;%‘0“" _ . . 3 o R - S R
et 2R R 7 v) s AW LT e
> » e = LS s ey "f ‘. ‘ - ," \? pot
- o / "y Q ¥ o o" 2 .f.,"_.v e’ 3 > - ,
'J »~ > > -' ¥ 4 N - lr:". 4 v‘é ‘.Il : 'l.' N
TR RN e Ny v N A B AR .o
> s e, : 2 e 9 “f" N Gt - ,."‘; _ ;-
i iy e A PO L e g Rk sy F
204 - IR e R L S P L e
»

o4

'V' @TheMERL

look at this absolute unit.

B e
ﬁﬁ:‘l‘u

-

Absolute Unit (test)

Go London User Group

This idea starts with testing

Test Driven Development

Test Driven Development

® e ® New Tab X +

C G testdriven development is I E‘m O

test driven development is - Google Search Other Bookmarks

test driven development is dead - o O

test driven development is bad

i) Go Build Dz

test driven development is not an xp practice

test driven development is a waste of time

L0 L0 L L0 L

test driven development is an xp practice

Google

Whose idea was TDD anyway?

Whose idea was TDD anyway?

Uncle Bob Martin

Whose idea was TDD anyway?

Uncle Bob Martin

Martin Fowler

Whose idea was TDD anyway?

Uncle Bob Martin
Martin Fowler

Kent Beck

Whose idea was TDD anyway?

Uncle Bob Martin
Martin Fowler
Kent Beck

Alan Perlis

“A software system can best be designed if the testing is
interlaced with the designing instead of being used after
the design.”

—Altan Perlis, NATO Software Engineering Conference, 1968
(source https:/ [www.infoq.com/ presentations/ 1-9-6-8)

https://www.infoq.com/presentations/1-9-6-8

I hold it as an article of faith that
writing tests at the same time as the
code 1s a good thing.

® ®@® [ArticleS.UncleBob.TheThreeRi X =+

<& C' (@ Not Secure | butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd Q W I 93 0

ArticleS. UncleBob.

but

:
:

TheThreeRulesOfTdd [add child]

Properties
Refactor

Where Used

Files
Versions
Recent Changes |

User Guide

THE THREE Laws oF TDD.

. Over the years | have come to describe Test Driven Development in terms of three simple rules. They are:

1. You are not allowed to write any production code unless it is to make a failing unit test pass.

2. You are not allowed to write any more of a unit test than is sufficient to fail; and compilation failures are
failures.

3. You are not allowed to write any more production code than is sufficient to pass the one failing unit test.

. You must begin by writing a unit test for the functionality that you intend to write. But by rule 2, you can't write

. very much of that unit test. As soon as the unit test code fails to compile, or fails an assertion, you must stop anc
. write production code. But by rule 3 you can only write the production code that makes the test compile or pass,
. and no more.

. If you think about this you will realize that you simply cannot write very much code at all without compiling and
. executing something. Indeed, this is really the point. In everything we do, whether writing tests, writing producti

code, or refactoring, we keep the system executing at all times. The time between running tests is on the order o

. seconds, or minutes. Even 10 minutes is too long.

. Too see this in operation, take a look at The Bowling Game Kata.

My life with TDD

If I knew what I wanted to write, then writing the tailing
test first was easy.

It I didn’t know what I was writing, the cost of
experimentation started at 200%; change the code, fix the
test.

This cost went up and to the right when one tfunction
called another.

Changing well covered code felt
safe, changing the tests felt like
cheating

J

A

-
HAPRY

2 DEVELORERSIEOOK UV
ADD ft{é§>§> E S.

J

A

-
HAPRY

2 DEVELORERSIEOOK UV
ADD ft{é§>§> E S.

B # DevTernity 2017: lan Coopc X —+

C & https://www.youtube.com/watch?v

> YouTube

- TDD, where did it all go wrong?

v

N

=N
) =y

> Pl o) 0:01/1:03:54

% DevTernity 2017: lan Cooper - TDD, Where Did It All Go Wrong

AUTOPLAY

X3

The SUT 1is not the class

What 1s the unit of code in a C
program?

What is the unit of code in a Java
program?

What 1s the unit of code 1n a Go
program?

“Go packages embody the spirit of the UNIX philosophy.
Go packages interact with one another via intertaces.
Programs are composed, just like the UNIX shell, by

combining packages together.”

—Me, a few years ago

The unit of software in Go is the
package

Test the behaviour of your unit, not
its implementation

The public API of a package
declares thes s what I do, not this is
how I do it

Behaviour

The public API of g6a
declares this is what do, not this is
how I do it

Behaviour

The public API of gf3
declares this is what do, not this is
how I do it

~~~ lmplementation



The unit 1s not the function

TDD doctrine states that you shall not write a line ot
production code until you have a failing unit test.

The result is every helper or private tfunction inside your

package has a test, and those tests break all the time when you
refactor.

This wasted work discourages refactoring. There is a risk that
the tests will end up fitting the observed behaviour of the
code under test, not asserting the expected behaviour.



The unit of code is the package

In Go the unit of code 1s the package. You only need to test the
behaviour of your package that can be observed.

Code coverage 1s your guide. It there are branches that cannot be
covered via the public API, delete that code.

When you refactor, use coverage to tell you where you need to add
tests. Beware Hyrum’s Law.

It you have high coverage, consider adding fuzz testing to check
that you’ve covered all the edge cases.



Let’s make this concrete

The product I've been working on for the last 14 months
1s ettectively a translator from k8s objects to gRPC objects.

Betore I applied these ideas, I would have to write out the
translations twice; once 1n code, once for the test fixtures.

Whenever the logic would change, I’'d have to change the
test. Whenever the gRPC detinitions would change, I'd
have to change both the business logic and the test.



Refactoring with impunity

I moved all the gRPC translation logic to its own package, tested
in 1solation from the k8s mechanics.

Only test public functions of that package (almost everything is
now a public function)

Business logic and the gRPC generation now separate, we can
use the gRPC in both business logic and tests.

Changes to the gRPC definitions were contained to one package.












¥ David Crawshaw liked

Matt Klein

ﬂﬁ@ @mattklein123

| find myself increasingly doing "assert driven
development.” | write code and add assert(false) in

Interesting logic spots, and then write tests that hit them

(followed by more code/asserts) until they are all gone. |
find this process is fast and yields excellent coverage.

7:03 AM - Feb 23, 2019 - Twitter Web App




HANGTHECODE

o
J'
|
|
|
|
*.

/'

7)) ,

. K Hang the code and hang the rules!
They’re more hke gu:delmes anyway

.'}/ :




HANGTHECODE

o
J'
|
|
|
|
*.

/'

7)) ,

. K Hang the code and hang the rules!
They’re more hke gu:delmes anyway

.'}/ :




Guidelines, not rules



Guidelines, not rules

You should write tests.



Guidelines, not rules

You should write tests.

You should write tests at the same time as you write your code.



Guidelines, not rules

You should write tests.
You should write tests at the same time as you write your code.

Hach Go package is a selt contained unit.



Guidelines, not rules

You should write tests.
You should write tests at the same time as you write your code.
Hach Go package is a selt contained unit.

Your tests should assert the observable behaviour ot your
package, not its implementation.



Guidelines, not rules

You should write tests.
You should write tests at the same time as you write your code.
Hach Go package is a selt contained unit.

Your tests should assert the observable behaviour ot your
package, not its implementation.

You should design your packages around their behaviour, not
their implementation.



Don’t be a stooge, watch this talk.

E = — -
i
h L

o

https:/ /youtu.be/EZ05¢7EMOLM



