
 1

Go at Canonical
Transitioning Juju to Go

Presentation by

Dave Cheney

david.cheney@canonical.com

juju.ubuntu.com

August 2012

 2

About this talk

● About Me

● About Juju

● Why the transition to Go

● How we develop Juju in Go

● Testing

● Error handling

● Goroutine management

● Questions

 3

About Me

● Contributor to Go since 2011

● Work with agl on the ssh package

● Work with minux.ma on all things ARM

● Run the arm5 builder

● Joined Canonical in May 2012 to work on Juju

 4

About Juju

● Service orchestration platform

● Juju describes services and their relationships

● A framework for developers and system administrators to deploy services

via charms

● Charms encapsulate the logic required to build, maintain, upgrade and

decommission a service

● Relationships between services allow charms to programmatically

configure themselves by invoking hooks

● Juju manages the provisioning of services on virtual (or physical)

infrastructure

 5

What are the components of Juju

● Centralised state repository

● A provisioning agent, which interfaces with the infrastructure provider to

spin up new machines when required

● One machine agent per machine, which handles starting unit agents

● One unit agent per service instance, which is responsible for running the

Charm hooks

● Command line tools

● Command line utilities

● Charms

 6

Why the transition to Go

● Juju has been shipping since Ubuntu 11.10

● Juju is a supported part of Ubuntu 12.04LTS.

● Python code uses Twisted, Python generators and callbacks heavily

● Quite hard to get right, hard to reason about

● Heavily asynchronous, hard to know when an action will occur, hard to

know if an action has occurred

 7

Why the transition to Go pt. 2

● The watcher pattern is a natural fit for channels

● Synchronous coding as an alternative to callbacks

● Static typing reduces the amount of test logic required for verification

● Go binaries have a lower resource footprint

● Go is supported on ARM

● Canonical is interested in Go, Juju is a the first of many projects

 8

How we develop Juju in Go

● Team of seven, including a manager

● Very geographically dispersed

● Use Launchpad for project management

● IRC and mailing lists for communication

● Weekly meeting held on G+ hangout

● Occasional week long sprints

 9

How we develop Juju in Go, pt 2

● Use Rietveld for code review via lbox

● Custom bzr wrapper, cobzr, for branch management

● Additional packages written by the team, goamz, gnuflag, goyaml, gozk

● Variety of editors; Vim, acme, Sublime text all represented

● Various $GOPATH strategies

 10

Testing

● Use gocheck heavily

● Lots of table driven tests

● Embedding allows us to compose test suites with complex seutp and tear

down phases

● jujutest package runs the same integration tests against all our providers

● Test in _test packages so we don't cheat with private symbols

 11

Testing pt. 2

package state_test

import (
 . "launchpad.net/gocheck"
 "launchpad.net/juju-core/state"
 "launchpad.net/juju-core/version"
)

type MachineSuite struct {
 ConnSuite
 machine *state.Machine
}

var _ = Suite(&MachineSuite{})

func (s *MachineSuite) SetUpTest(c *C) {
 s.ConnSuite.SetUpTest(c)
 var err error
 s.machine, err = s.State.AddMachine()
 c.Assert(err, IsNil)
}

 12

Testing pt. 3

id, err := m.InstanceId()
c.Assert(err, IsNil)
c.Assert(id, Equals, 1)

ch, ok := <-w.Changes()
c.Assert(ok, Equals, true)
c.Assert(ch.Changed, HasLen, 0)
c.Assert(ch.Departed, HasLen, 0)

actual := make(map[string]interface{})
err = unmarshal(ctx.Stdout.(*bytes.Buffer).Bytes(), &actual)
c.Assert(err, IsNil)
c.Assert(actual, DeepEquals, expected)

 13

Testing pt. 4

FAIL: cmd_test.go:307: cmdSuite.TestUnexposeCommandInit

cmd_test.go:310:
 c.Assert(err, ErrorMatches, "no service specified")
... error string = "no service name specified"
... regex string = "no service specified"

 14

Error handling

● We check errors a lot as most operations can fail

● Constantly considering the error path, and how to leave the state in a

manner that actions can be retried later

● Moving to MongoDB will allow us to batch our requests and consolidate

failure points

 16

Goroutine management

● Use the tomb package

● Tombs manage a goroutine's lifecycle

● Tombs let us wait for a goroutine to exit, and capture any error if this exit

was unexpected

 17

Goroutine management pt. 2

func (w *ChildrenWatcher) loop() {
 defer w.tomb.Done()
 defer close(w.changeChan)

 watch, err := w.update(zookeeper.EVENT_CHILD)
 if err != nil {
 w.tomb.Kill(err)
 return
 }

 for {
 select {
 case <-w.tomb.Dying():
 return
 case evt := <-watch:
 if !evt.Ok() {
 w.tomb.Killf("watcher: session event: %v", evt)
 return
 }
 watch, err = w.update(evt.Type)
 if err != nil {
 w.tomb.Kill(err)
 return
 }
 }
 }
}

 18

Thank you. Questions ?
http://launchpad.net/juju-core

Dave Cheney

david.cheney@canonical.com

@davecheney

 19

One more thing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19

